df1:
df1=pd.DataFrame({'id':['val1','val2','val3','val4','val5','val6'],
'min':['10','10','75','42','20','50'],
'max':['93','43','122','80','30','105']})
df2:
df2=pd.DataFrame({'id':['val1','val2','val5','val1','val5','val2'],
'check':['55.4','35.8','93','11.5','23.8','3.22']})
目标是当id与 df1 匹配时在 df2 中对相应的检查列值求和,并检查结果总和是否在 min-max df1中的strong>范围,并更新df2的结果列中的值。
输出df:
id check result
val1 55.4 positive
val2 35.8 positive
val5 93 positive
val3 10.1 negative
val1 11.5 positive
val5 23.8 positive
val2 3.22 positive
非常感谢!
答案 0 :(得分:3)
让我们做merge
,eval
df=df2.merge(df1,how='left').eval('result=check>min and check < max')
Out[621]:
id check min max result
0 val1 55.4 10 93 True
1 val2 35.8 10 43 True
2 val5 93 20 30 False
3 val1 11.5 10 93 True
4 val5 23.8 20 30 True
5 val2 3.22 10 43 True
答案 1 :(得分:2)
我们可以合并并使用between
:
(df2.merge(df1, on='id', how='left')
.assign(result=lambda x: np.where(x.check.between(x['min'],x['max']),
'positive', 'negative')
)
.drop(['min','max'], axis=1)
)
输出:
id check result
0 val1 55.4 positive
1 val2 35.8 positive
2 val5 93 negative
3 val1 11.5 positive
4 val5 23.8 positive
5 val2 3.22 positive
答案 2 :(得分:2)
我认为您需要DataFrame.merge
和GroupBy.transform
。然后使用np.where
创建一个新列:
df3 = df2.merge(df1, how='left', on = 'id')
s = df3.groupby('id')['check'].transform('sum')
df2['result']=np.where(s.lt(df3['max']) & s.gt(df3['min']), 'positive', 'negative')
print(df2)
输出df2
id check result
0 val1 55.4 positive
1 val2 35.8 positive
2 val5 93 negative
3 val1 11.5 positive
4 val5 23.8 negative
5 val2 3.22 positive