我正在尝试为CSV数据集生成生成器和鉴别器。 我在哪里构建辅助生成对抗网络(GAN)模型 但是在编码时会遇到一些错误。 请帮助解决这些错误。 我愿意接受所有人的建议。预先感谢您检查我的问题
发电机
class Item
{
Ingredient ingredient;
int quantity;
}
class Recipe extends Ingredient
{
List<Item> items;
}
鉴别器
def create_generator():
generator=Sequential()
generator.add(Dense(units=64,input_dim=10))
generator.add(LeakyReLU(0.2))
generator.add(Dense(units=128))
generator.add(LeakyReLU(0.2))
generator.add(Dense(units=256))
generator.add(LeakyReLU(0.2))
generator.add(Dense(units=44, activation='tanh'))
generator.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001, beta_1=0.5))
return generator
> 错误
def create_discriminator():
discriminator = Sequential()
discriminator.add(Dense(units = 256,input_dim = 44))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(units=128))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(units=64))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
# inpu = Input(shape=(44,))
value = discriminator(Input(shape=(44,)))
# discriminator.add(Dense(units=1, activation='sigmoid'))
discriminator_fake = Dense(units=1, activation='sigmoid')(value)
discriminator_predict = Dense(units=2, activation='softmax')(value)
model = Model(inputs = Input(shape=(44,)), outputs=[discriminator_fake,discriminator_predict])
# discriminator.compile(loss='binary_crossentropy', optimizer='adam')
model.compile(loss=['binary_crossentropy', 'sparse_categorical_crossentropy'], optimizer=Adam(lr=0.001, beta_1=0.5))
return model