我需要一个Tensorflow模型将图像分类为4个不同的类别,为此我将在预训练的InceptionResNetV2模型(权重='Imagenet')上进行迁移学习。在model.fit()期间,我的准确度为97.4%,损失为0.3,而我的验证准确度仍为84%,损失为0.4。我过拟合了,如何提高验证准确性?
version: '3.7'
x-common-python-api:
&default-python-api
build:
context: /Users/AjayB/Desktop/python-api/
networks:
- app-tier
environment:
- PYTHON_API_ENV=development
volumes:
- .:/python_api/
services:
python-api:
<<: *default-python-api
ports:
- "8000:8000"
depends_on:
- python-model
command: >
sh -c "ls /python-api/ &&
python_api_setup.sh development
python manage.py migrate &&
python manage.py runserver 0.0.0.0:8000"
python-model: &python-model
.
.
.
python-celery:
<<: *default-python-api
links:
- redis:redis
depends_on:
- redis
command: >
sh -c "celery -A server worker -l info"
redis:
.
.
.