我有一列称为发布(日期)。如您所见,它具有多种日期格式以及nan值。我想跳过nan值,将所有其他格式都转换为%Y-%-%d,并忽略只有一年的格式。
我尝试了df ['publish_time'] = pd.to_datetime(df ['publish_time']) 还有类似的东西:
fmt=['%Y-%m-%d', '%d-%m-%Y', '%d/%m/%Y',
'%Y-%d-%m', '%Y-%d-%b', '%d-%b-%Y', '%d/%b/%Y','Year: %d; month','month:
%d;Year','%Y','%b %d %Y','%b %Y %d']
但我无法解决。有什么建议?谢谢!
这是该列:
published
2014 Jul 22
2003 Aug
2019 Nov 26
2012-12-07
2020 Jan 21
2015-01-01
2010-11-30
2007-05-10
2020
2012-02-29
2016 Apr 19
2006-12-31
2013 Jun 27
2019 Jun 19
2015 Jun 12
2006 Jun-Dec
2006-07-31
nan
2017-04-15
2016 May 22
2020 Feb
2017 May 6
2020 Mar 11
2013-04-30
2020-03-07
nan
2018
答案 0 :(得分:2)
首先在fmt
列表中添加了2种新格式:
fmt=['%Y-%m-%d', '%d-%m-%Y', '%d/%m/%Y',
'%Y-%d-%m', '%Y-%d-%b', '%d-%b-%Y', '%d/%b/%Y','Year: %d; month',
'month: %d;Year','%Y','%b %d %Y','%b %Y %d',
'%Y %b %d', '%Y %b']
然后在列表理解中将列转换为日期时间,参数errors='coerce'
用于将不匹配的值转换为缺少的值。最后由concat
加入。
最后一个原因是每行可能有多个值,因为dd/mm/YYYY
和mm/dd/YYYY
格式(不确定是一天中的月份)被用于选择第一列。这意味着将以高优先级选择列表中的第一格式。
dfs = [pd.to_datetime(df['publish_time'], format=f, errors='coerce') for f in fmt]
df['publish_time1']= pd.concat(dfs, axis=1).bfill(axis=1).iloc[:, 0]
print (df)
publish_time publish_time1
0 2014 Jul 22 2014-07-22
1 2003 Aug 2003-08-01
2 2019 Nov 26 2019-11-26
3 2012-12-07 2012-12-07
4 2020 Jan 21 2020-01-21
5 2015-01-01 2015-01-01
6 2010-11-30 2010-11-30
7 2007-05-10 2007-05-10
8 2020 2020-01-01
9 2012-02-29 2012-02-29
10 2016 Apr 19 2016-04-19
11 2006-12-31 2006-12-31
12 2013 Jun 27 2013-06-27
13 2019 Jun 19 2019-06-19
14 2015 Jun 12 2015-06-12
15 2006 Jun-Dec NaT
16 2006-07-31 2006-07-31
17 NaN NaT
18 2017-04-15 2017-04-15
19 2016 May 22 2016-05-22
20 2020 Feb 2020-02-01
21 2017 May 6 2017-05-06
22 2020 Mar 11 2020-03-11
23 2013-04-30 2013-04-30
24 2020-03-07 2020-03-07
25 NaN NaT
26 2018 2018-01-01