我正在尝试将张量从(3,3)
减小到(1, 1)
,但我想保留原始张量:
import torch
a = torch.rand(3, 3)
a_copy = a.clone()
a_copy.resize_(1, 1)
我的初始张量需要requires_grad=True
,但PyTorch禁止我尝试调整副本的大小:
a = torch.rand(3, 3, requires_grad=True)
a_copy = a.clone()
a_copy.resize_(1, 1)
引发错误:
Traceback (most recent call last):
File "pytorch_test.py", line 7, in <module>
a_copy.resize_(1, 1)
RuntimeError: cannot resize variables that require grad
我也尝试过.clone()
和.detach()
:
a = torch.rand(3, 3, requires_grad=True)
a_copy = a.clone().detach()
with torch.no_grad():
a_copy.resize_(1, 1)
则会显示此错误:
Traceback (most recent call last):
File "pytorch_test.py", line 14, in <module>
a_copy.resize_(1, 1)
RuntimeError: set_sizes_contiguous is not allowed on a Tensor created from .data or .detach().
If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)
without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.
For example, change:
x.data.set_(y)
to:
with torch.no_grad():
x.set_(y)
no_grad()
因此,按照他们在错误消息中所说的那样,我删除了.detach()
并改用no_grad()
:
a = torch.rand(3, 3, requires_grad=True)
a_copy = a.clone()
with torch.no_grad():
a_copy.resize_(1, 1)
但是它仍然给我关于grad的错误:
Traceback (most recent call last):
File "pytorch_test.py", line 21, in <module>
a_copy.resize_(1, 1)
RuntimeError: cannot resize variables that require grad
我看过Resize PyTorch Tensor,但是在该示例中它的张量保留了所有原始值。 我还查看了Pytorch preferred way to copy a tensor,这是我用来复制张量的方法。
我正在使用PyTorch版本1.4.0
答案 0 :(得分:0)
有一个narrow()
函数:
def samestorage(x,y):
if x.storage().data_ptr()==y.storage().data_ptr():
print("same storage")
else:
print("different storage")
def contiguous(y):
if True==y.is_contiguous():
print("contiguous")
else:
print("non contiguous")
# narrow => same storage contiguous tensors
import torch
x = torch.randn(3, 3, requires_grad=True)
y = x.narrow(0, 1, 2) #dim, start, len
print(x)
print(y)
contiguous(y)
samestorage(x,y)
出局:
tensor([[ 1.1383, -1.2937, 0.8451],
[ 0.0151, 0.8608, 1.4623],
[ 0.8490, -0.0870, -0.0254]], requires_grad=True)
tensor([[ 0.0151, 0.8608, 1.4623],
[ 0.8490, -0.0870, -0.0254]], grad_fn=<SliceBackward>)
contiguous
same storage
答案 1 :(得分:-1)
我认为您应该先分离,然后克隆:
a = torch.rand(3, 3, requires_grad=True)
a_copy = a.detach().clone()
a_copy.resize_(1, 1)
注意:a.detach()
返回从当前图形分离的 new 张量(它不像a
那样从图形分离a.detach_()
本身)。但是,由于它与a
共享存储,因此您也应该克隆它。这样,您对a_copy
所做的任何操作都不会影响a
。但是,我不确定a.detach().clone()
为何起作用,但是a.clone().detach()
却给出了错误。
修改:
以下代码也可以使用(这可能是一个更好的解决方案):
a = torch.rand(3, 3, requires_grad=True)
with torch.no_grad():
a_copy = a.clone()
a_copy.resize_(1, 1)