获取二维数组中每列的第二个最小值

时间:2020-03-11 12:21:28

标签: python arrays python-3.x list numpy

如何从每一列中获取第二个最小值?我有这个数组:

A = [[72 76 44 62 81 31]
     [54 36 82 71 40 45]
     [63 59 84 36 34 51]
     [58 53 59 22 77 64]
     [35 77 60 76 57 44]]

我希望输出如下:

A = [54 53 59 36 40 44]

6 个答案:

答案 0 :(得分:12)

只需一行即可尝试:

[sorted(i)[1] for i in zip(*A)]

实际情况:

In [12]: A = [[72, 76, 44, 62, 81, 31], 
    ...:      [54 ,36 ,82 ,71 ,40, 45], 
    ...:      [63 ,59, 84, 36, 34 ,51], 
    ...:      [58, 53, 59, 22, 77 ,64], 
    ...:      [35 ,77, 60, 76, 57, 44]] 

In [18]: [sorted(i)[1] for i in zip(*A)]                                                                                                                                                                           
Out[18]: [54, 53, 59, 36, 40, 44]

zip(*A)将转置您的列表列表,以使列变为行。

,如果您有重复的值,例如:

In [19]: A = [[72, 76, 44, 62, 81, 31], 
    ...:  [54 ,36 ,82 ,71 ,40, 45], 
    ...:  [63 ,59, 84, 36, 34 ,51], 
    ...:  [35, 53, 59, 22, 77 ,64],   # 35
    ...:  [35 ,77, 50, 76, 57, 44],]  # 35

如果您需要跳过两个35,则可以使用set()

In [29]: [sorted(list(set(i)))[1] for i in zip(*A)]                                                                                                                                                                
Out[29]: [54, 53, 50, 36, 40, 44]

答案 1 :(得分:6)

numpy数组上的操作应使用numpy函数来完成,因此请看一下其中的一个:

np.sort(A, axis=0)[1, :]
Out[61]: array([54, 53, 59, 36, 40, 44])

答案 2 :(得分:4)

您可以使用heapq.nsmallest

from heapq import nsmallest

[nsmallest(2, e)[-1] for e in zip(*A)]

输出:

[54, 53, 50, 36, 40, 44]

我添加了一个简单的基准来比较已经发布的不同解决方案的性能:

enter image description here

from simple_benchmark import BenchmarkBuilder
from heapq import nsmallest


b = BenchmarkBuilder()

@b.add_function()
def MehrdadPedramfar(A):
    return [sorted(i)[1] for i in zip(*A)]

@b.add_function()
def NicolasGervais(A):
    return np.sort(A, axis=0)[1, :]

@b.add_function()
def imcrazeegamerr(A):
    rotated = zip(*A[::-1])

    result = []
    for arr in rotated:
        # sort each 1d array from min to max
        arr = sorted(list(arr))
        # add the second minimum value to result array
        result.append(arr[1])

    return result

@b.add_function()
def Daweo(A):
    return np.apply_along_axis(lambda x:heapq.nsmallest(2,x)[-1], 0, A)

@b.add_function()       
def kederrac(A):
    return [nsmallest(2, e)[-1] for e in zip(*A)]


@b.add_arguments('Number of row/cols (A is  square matrix)')
def argument_provider():
    for exp in range(2, 18):
        size = 2**exp
        yield size, [[randint(0, 1000) for _ in range(size)] for _ in range(size)]

r = b.run()
r.plot()

zipsorted功能结合使用是2d小型列表的最快解决方案,而将zipheapq.nsmallest结合使用则是2d大型列表中最好的解决方案

答案 3 :(得分:1)

我希望我能正确理解您的问题,但是无论哪种方式,这都是我的解决方案,我确信这样做的方式更加优雅,但确实可行

A = [[72,76,44,62,81,31]
 ,[54,36,82,71,40,45]
 ,[63,59,84,36,34,51]
 ,[58,53,59,22,77,64]
 ,[35,77,50,76,57,44]]

#rotate the array 90deg
rotated = zip(*A[::-1])

result = []
for arr in rotated:
    # sort each 1d array from min to max
    arr = sorted(list(arr))
    # add the second minimum value to result array
    result.append(arr[1])
print(result)

enter image description here

答案 4 :(得分:0)

>>> A = np.arange(30).reshape(5,6).tolist()
>>> A
[[0, 1, 2, 3, 4, 5], 
 [6, 7, 8, 9, 10, 11], 
 [12, 13, 14, 15, 16, 17], 
 [18, 19, 20, 21, 22, 23],
 [24, 25, 26, 27, 28, 29]]

已更新: 使用set防止使用zip(*A)

复制和转置列表
>>> [sorted(set(items))[1] for items in zip(*A)]
[6, 7, 8, 9, 10, 11]

old:每行第二个最小项

>>> [sorted(set(items))[1] for items in A]
[1, 7, 13, 19, 25]

答案 5 :(得分:0)

假设Anumpy.array(如果成立,请考虑在问题中添加numpy标签),则可以通过以下方式使用apply_along_axis

import heap
import numpy as np
A = np.array([[72, 76, 44, 62, 81, 31],
              [54, 36, 82, 71, 40, 45],
              [63, 59, 84, 36, 34, 51],
              [58, 53, 59, 22, 77, 64],
              [35, 77, 60, 76, 57, 44]])
second_mins = np.apply_along_axis(lambda x:heapq.nsmallest(2,x)[-1], 0, A)
print(second_mins)  # [54 53 59 36 40 44]

请注意,我使用heapq.nsmallest是因为它进行了尽可能多的排序以获取2个最小的元素,而sorted却完成了排序。