我想向主体中具有图像的基于Python的API发送请求。我尝试使用5种方法发送数据:
final api = Uri.parse("https://e8f628d7.ngrok.io/detections");
Map<String, dynamic> body = {'images': image};
final response = await http.post(
api,
body: body,
);
if (response.statusCode == 200) {
final responseJson = json.decode(response.body);
print(responseJson);
}
Map<String, dynamic> body = {'images': image};
var client = new http.Client();
client.post("https://e8f628d7.ngrok.io/detections",body: body).then((response) {
print("Post " + response.statusCode.toString());
});
final api = Uri.parse("https://e8f628d7.ngrok.io/detections");
var stream = new http.ByteStream(DelegatingStream.typed(image.openRead()));
var length = await image.length();
var request = new http.MultipartRequest("POST", api);
var multipartFileSign = new http.MultipartFile(
'profile_pic', stream, length,
filename: path.basename(image.path));
request.files.add(multipartFileSign);
// send
var response = await request.send();
print(response.statusCode);
response.stream.transform(utf8.decoder).listen((value) {
print(value);
});
if (image == null) return;
String base64Image = base64Encode(image.readAsBytesSync());
http.post(api, body: {
'images': base64Image,
}).then((res) {
print(res.statusCode);
print(json.decode(res.body));
}).catchError((err) {
print(err);
});
}
我能够发送图像并收到200成功响应。但是,我不确定图像是否正在更改,或者在发送图像时是否发生任何问题,因为响应为空,而它应该具有某种响应。 这是我的服务器与之运行的app.py:
import time
from absl import app, logging
import cv2
import numpy as np
import tensorflow as tf
from yolov3_tf2.models import (
YoloV3, YoloV3Tiny
)
from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset
from yolov3_tf2.utils import draw_outputs
from flask import Flask, request, Response, jsonify, send_from_directory, abort
import os
# customize your API through the following parameters
classes_path = './data/labels/coco.names'
weights_path = './weights/yolov3.tf'
tiny = False # set to True if using a Yolov3 Tiny model
size = 416 # size images are resized to for model
output_path = './detections/' # path to output folder where images with detections are saved
num_classes = 80 # number of classes in model
# load in weights and classes
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
if tiny:
yolo = YoloV3Tiny(classes=num_classes)
else:
yolo = YoloV3(classes=num_classes)
yolo.load_weights(weights_path).expect_partial()
print('weights loaded')
class_names = [c.strip() for c in open(classes_path).readlines()]
print('classes loaded')
# Initialize Flask application
app = Flask(__name__)
# API that returns JSON with classes found in images
@app.route('/detections', methods=['POST'])
def get_detections():
raw_images = []
images = request.files.getlist("images")
image_names = []
for image in images:
image_name = image.filename
image_names.append(image_name)
image.save(os.path.join(os.getcwd(), image_name))
img_raw = tf.image.decode_image(
open(image_name, 'rb').read(), channels=3)
raw_images.append(img_raw)
num = 0
# create list for final response
response = []
for j in range(len(raw_images)):
# create list of responses for current image
responses = []
raw_img = raw_images[j]
num+=1
img = tf.expand_dims(raw_img, 0)
img = transform_images(img, size)
t1 = time.time()
boxes, scores, classes, nums = yolo(img)
t2 = time.time()
print('time: {}'.format(t2 - t1))
print('detections:')
for i in range(nums[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
responses.append({
"class": class_names[int(classes[0][i])],
"confidence": float("{0:.2f}".format(np.array(scores[0][i])*100))
})
response.append({
"image": image_names[j],
"detections": responses
})
img = cv2.cvtColor(raw_img.numpy(), cv2.COLOR_RGB2BGR)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
cv2.imwrite(output_path + 'detection' + str(num) + '.jpg', img)
print('output saved to: {}'.format(output_path + 'detection' + str(num) + '.jpg'))
#remove temporary images
for name in image_names:
os.remove(name)
try:
return jsonify({"response":response}), 200
except FileNotFoundError:
abort(404)
# API that returns image with detections on it
@app.route('/image', methods= ['POST'])
def get_image():
image = request.files["images"]
image_name = image.filename
image.save(os.path.join(os.getcwd(), image_name))
img_raw = tf.image.decode_image(
open(image_name, 'rb').read(), channels=3)
img = tf.expand_dims(img_raw, 0)
img = transform_images(img, size)
t1 = time.time()
boxes, scores, classes, nums = yolo(img)
t2 = time.time()
print('time: {}'.format(t2 - t1))
print('detections:')
for i in range(nums[0]):
print('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
cv2.imwrite(output_path + 'detection.jpg', img)
print('output saved to: {}'.format(output_path + 'detection.jpg'))
# prepare image for response
_, img_encoded = cv2.imencode('.png', img)
response = img_encoded.tostring()
#remove temporary image
os.remove(image_name)
try:
return Response(response=response, status=200, mimetype='image/png')
except FileNotFoundError:
abort(404)
if __name__ == '__main__':
app.run(debug=True, host = '0.0.0.0', port=5000)
我尝试直接通过Postman发送相同的图像并获得所需的响应,但是当我使用flutter应用程序执行该操作时,却听不到。图像是否有可能被更改或修改?而且,除了上述3种方法之外,还有其他方法可以将图像发送到API吗?
答案 0 :(得分:1)
您需要确保使用的http
版本正确。最近有一次回归打破了多部分形式。现在,在pubspec.yaml
中对确切的版本进行硬编码是最安全的(您可能希望在pubspec.lock
中查看所用的版本,以确认它是出现错误的版本之一。)< / p>
http: 0.12.0+4
然后尝试:
main() async {
http.MultipartRequest request = http.MultipartRequest('POST', Uri.parse(url));
request.files.add(
await http.MultipartFile.fromPath(
'images',
File('kitten1.jpg').path,
contentType: MediaType('application', 'jpeg'),
),
);
http.StreamedResponse r = await request.send();
print(r.statusCode);
print(await r.stream.transform(utf8.decoder).join());
}