tensorflowjs:编写tensorflowjs自定义层时如何扩展tf.layers.conv2d

时间:2020-03-07 13:15:21

标签: python tensorflow keras tensorflow.js

我需要编写一个自定义的tensorflowjs层来导入我的模型。在原始的python代码中,这是通过扩展Conv2D实现的,但在tfjs代码中似乎无法实现。寻求帮助。

错误消息 İmage

我是tensorflow的新手,我想知道如何将这个自定义层转换为tfjs代码,这困扰了我很长时间,任何帮助将不胜感激。

这是python cunstom层代码。

color = ...

这是我的tfjs代码


from keras.utils import conv_utils
from keras import backend as K
from keras.engine import InputSpec
from keras.layers import Conv2D


class PConv2D(Conv2D):
    def __init__(self, *args, n_channels=3, mono=False, **kwargs):
        super().__init__(*args, **kwargs)
        self.input_spec = [InputSpec(ndim=4), InputSpec(ndim=4)]

    def build(self, input_shape):        
        """Adapted from original _Conv() layer of Keras        
        param input_shape: list of dimensions for [img, mask]
        """

        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1

        if input_shape[0][channel_axis] is None:
            raise ValueError('The channel dimension of the inputs should be defined. Found `None`.')

        self.input_dim = input_shape[0][channel_axis]

        # Image kernel
        kernel_shape = self.kernel_size + (self.input_dim, self.filters)
        self.kernel = self.add_weight(shape=kernel_shape,
                                      initializer=self.kernel_initializer,
                                      name='img_kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)
        # Mask kernel
        self.kernel_mask = K.ones(shape=self.kernel_size + (self.input_dim, self.filters))

        if self.use_bias:
            self.bias = self.add_weight(shape=(self.filters,),
                                        initializer=self.bias_initializer,
                                        name='bias',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
        else:
            self.bias = None
        self.built = True

    def call(self, inputs, mask=None):
        '''
        We will be using the Keras conv2d method, and essentially we have
        to do here is multiply the mask with the input X, before we apply the
        convolutions. For the mask itself, we apply convolutions with all weights
        set to 1.
        Subsequently, we set all mask values >0 to 1, and otherwise 0
        ''' 

        # Both image and mask must be supplied
        if type(inputs) is not list or len(inputs) != 2:
            raise Exception('PartialConvolution2D must be called on a list of two tensors [img, mask]. Instead got: ' + str(inputs))

        # Create normalization. Slight change here compared to paper, using mean mask value instead of sum
        normalization = K.mean(inputs[1], axis=[1,2], keepdims=True)
        normalization = K.repeat_elements(normalization, inputs[1].shape[1], axis=1)
        normalization = K.repeat_elements(normalization, inputs[1].shape[2], axis=2)

        # Apply convolutions to image
        img_output = K.conv2d(
            (inputs[0]*inputs[1]) / normalization, self.kernel, 
            strides=self.strides,
            padding=self.padding,
            data_format=self.data_format,
            dilation_rate=self.dilation_rate
        )

        # Apply convolutions to mask
        mask_output = K.conv2d(
            inputs[1], self.kernel_mask, 
            strides=self.strides,
            padding=self.padding,            
            data_format=self.data_format,
            dilation_rate=self.dilation_rate
        )

        # Where something happened, set 1, otherwise 0        
        mask_output = K.cast(K.greater(mask_output, 0), 'float32')

        # Apply bias only to the image (if chosen to do so)
        if self.use_bias:
            img_output = K.bias_add(
                img_output,
                self.bias,
                data_format=self.data_format)

        # Apply activations on the image
        if self.activation is not None:
            img_output = self.activation(img_output)

        return [img_output, mask_output]

    def compute_output_shape(self, input_shape):
        if self.data_format == 'channels_last':
            space = input_shape[0][1:-1]
            new_space = []
            for i in range(len(space)):
                new_dim = conv_utils.conv_output_length(
                    space[i],
                    self.kernel_size[i],
                    padding=self.padding,
                    stride=self.strides[i],
                    dilation=self.dilation_rate[i])
                new_space.append(new_dim)
            new_shape = (input_shape[0][0],) + tuple(new_space) + (self.filters,)
            return [new_shape, new_shape]
        if self.data_format == 'channels_first':
            space = input_shape[2:]
            new_space = []
            for i in range(len(space)):
                new_dim = conv_utils.conv_output_length(
                    space[i],
                    self.kernel_size[i],
                    padding=self.padding,
                    stride=self.strides[i],
                    dilation=self.dilation_rate[i])
                new_space.append(new_dim)
            new_shape = (input_shape[0], self.filters) + tuple(new_space)
            return [new_shape, new_shape]

1 个答案:

答案 0 :(得分:0)

该错误是由

引起的

var myTester =新的pconv2d()

pconv2d需要kernelSize和过滤器。作为参数传递的config对象的其他属性是可选的

new pconv2d({kernelSize: number, filters: number})将解决此问题。

但是就像python层一样,pconv2d可以从tf.layers.conv2d继承。

这是一个简单的示例来演示

class pconv2d extends tf.layers.conv2d {
  static className = 'MyCustomLayer';

  constructor(config) {
    super(config);
    // add other initialization
  }
  // add computation of the layer
}
tf.serialization.registerClass(pconv2d);
a = tf.ones([16, 16, 16, 16])
b = new MyCustomLayer({kernelSize: 2, filters: 2}).apply(a)
b.print()