我试图弄清楚如何将数据帧从长到宽,同时按两个变量(菱形切割以及钻石df的颜色D和F)进行分组,并同时总结数据的一些关键特征。
具体来说,我试图得到95%CI和p值附近的两个均值之间的差异。
Here是我想要的输出表的示例(红色是我要完成的工作)。
下面的示例代码,显示了我已经走了多远:
library(tidyverse)
# Build summary data
diamonds <- diamonds %>%
select(cut, depth, color) %>%
filter(color == "F" | color == "D") %>%
group_by(cut, color) %>%
summarise(mean = mean(depth), #calculate mean & CIs
lower_ci = mean(depth) - qt(1- 0.05/2, (n() - 1))*sd(depth)/sqrt(n()),
upper_ci = mean(depth) + qt(1- 0.05/2, (n() - 1))*sd(depth)/sqrt(n()))
# Turn table from long to wide
diamonds <- dcast(as.data.table(diamonds), cut ~ color, value.var = c("mean", "lower_ci", "upper_ci"))
# Rename & calculate the mean difference
diamonds <- diamonds %>%
rename(
Cut = cut,
Mean.Depth.D = mean_D,
Mean.Depth.F = mean_F,
Lower.CI.Depth.D = lower_ci_D,
Lower.CI.Depth.F = lower_ci_F,
Upper.CI.Depth.D = upper_ci_D,
Upper.CI.Depth.F = upper_ci_F) %>%
mutate(Mean.Difference = Mean.Depth.D - Mean.Depth.F)
# Re-organize the table
diamonds <- subset(diamonds, select = c(Cut:Mean.Depth.F, Mean.Difference, Lower.CI.Depth.D:Upper.CI.Depth.F))
#Calculate the CIs (upper and lower) and p.values for mean difference for each cut and insert them into the table.
?
我认为我应该在总结之前的某个时候计算CI和p值表示颜色D和F之间的深度差。
感谢您的输入。
答案 0 :(得分:1)
要对cut
的不同值进行D和F颜色的均值比较(使用t检验),这是您需要做的:
library(broom)
diamonds %>%
filter(color %in% c("D", "F")) %>%
group_by(cut) %>%
do( tidy(t.test(data=., depth~color)))