删除边界框轮廓

时间:2020-03-04 19:30:47

标签: python image opencv image-processing scikit-image

我有这张图片

enter image description here

我申请时

from skimage import filters
result_sobel = filters.sobel(image)

图片是

enter image description here

如何删除边界框轮廓,使其与背景融合?

理想情况下,输出将为黑色背景,中间为红色,而没有边框。

2 个答案:

答案 0 :(得分:3)

您可以在skimage.filters.sobel中使用蒙版:

import skimage

img = skimage.io.imread('N35nj.png', as_gray=True)   
mask = img > skimage.filters.threshold_otsu(img)
edges = skimage.filters.sobel(img, mask=mask)

让我们绘制结果:

import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,5))
ax[0].imshow(img, cmap='gray')
ax[0].set_title('Original image')

ax[1].imshow(edges, cmap='magma')
ax[1].set_title('Sobel edges')

for a in ax.ravel():
    a.axis('off')

plt.tight_layout()
plt.show()

enter image description here

答案 1 :(得分:2)

这是Python / OpenCV中的一种方法。只需从原始灰色图像中获取轮廓即可。然后在红色轮廓图像上以3像素厚(Sobel边缘厚度)的黑色绘制那些。我注意到您的两个图像的大小不同,并且轮廓相对于灰色框有所偏移。为什么呢?

灰色原图:

enter image description here

Sobel Red Edges:

enter image description here

import cv2
import numpy as np

# read original image as grayscale 
img = cv2.imread('gray_rectangle.png', cv2.IMREAD_GRAYSCALE)
hi, wi = img.shape[:2]

# read edge image
edges = cv2.imread('red_edges.png')

# edges image is larger than original and shifted, so crop it to same size
edges2 = edges[3:hi+3, 3:wi+3]

# threshold img
thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY)[1]

# get contours and draw them as black on edges image
result = edges2.copy()
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
cv2.drawContours(result, contours, -1, (0,0,0), 3)

# write result to disk
cv2.imwrite("red_edges_removed.png", result)

# display it
cv2.imshow("ORIG", img)
cv2.imshow("EDGES", edges)
cv2.imshow("THRESH", thresh)
cv2.imshow("RESULT", result)
cv2.waitKey(0)


结果:

enter image description here