我定义了一个典型的暹罗网络体系结构,以获取使用temp_model(权重经过三重损失函数预训练的VGG模型)的编码,在下面的代码中,最后我训练了模型并将其保存为磁盘作为h5文件,但是当我加载时用于预测的模型,我得到一个错误(ValueError:无效的input_shape参数[[None,224,224,3),(None,224,224,3),(None,224,224,3)]:模型具有1个张量输入。)
'''
left_input = Input(shape = (224, 224, 3))
right_input = Input(shape = (224, 224, 3))
# Generate the encodings (feature vectors) for the two images
encoded_l = temp_model([left_input,left_input,left_input])
encoded_r = temp_model([right_input,right_input,right_input])
# Add a customized layer to compute the absolute difference between the encodings
L1_layer = Lambda(lambda tensors:K.abs(tensors[0] - tensors[1]))
L1_distance = L1_layer([encoded_l, encoded_r])
L1_distance = Dense(512,activation='relu')(L1_distance)
L1_distance = Dropout(0.2)(L1_distance)
L1_distance = Dense(10,activation='relu')(L1_distance)
L1_distance = Dropout(0.2)(L1_distance)
# Add a dense layer with a sigmoid unit to generate the similarity score
prediction = Dense(1,activation='sigmoid')(L1_distance)
# Connect the inputs with the outputs
siamese_net = Model(inputs=[left_input,right_input],outputs=prediction)
siamese_net.compile(loss='binary_crossentropy', optimizer="adam",
metrics=['accuracy'])
siamese_net.summary()
# return the model
return siamese_net
''' -------------------------------------------------- ------------------------- ValueError跟踪(最近一次通话) 在 1 #final_model = siamese_model() ----> 2 final_model = load_model(“ triplet_loss_function_vgg16_siamese_h100_128.h5”)
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py in load_model(filepath, custom_objects, compile)
417 f = h5dict(filepath, 'r')
418 try:
--> 419 model = _deserialize_model(f, custom_objects, compile)
420 finally:
421 if opened_new_file:
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py in _deserialize_model(f, custom_objects, compile)
223 raise ValueError('No model found in config.')
224 model_config = json.loads(model_config.decode('utf-8'))
--> 225 model = model_from_config(model_config, custom_objects=custom_objects)
226 model_weights_group = f['model_weights']
227
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py in model_from_config(config, custom_objects)
456 '`Sequential.from_config(config)`?')
457 from ..layers import deserialize
--> 458 return deserialize(config, custom_objects=custom_objects)
459
460
/opt/anaconda3/lib/python3.7/site-packages/keras/layers/__init__.py in deserialize(config, custom_objects)
53 module_objects=globs,
54 custom_objects=custom_objects,
---> 55 printable_module_name='layer')
/opt/anaconda3/lib/python3.7/site-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
143 config['config'],
144 custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 145 list(custom_objects.items())))
146 with CustomObjectScope(custom_objects):
147 return cls.from_config(config['config'])
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/network.py in from_config(cls, config, custom_objects)
1030 if layer in unprocessed_nodes:
1031 for node_data in unprocessed_nodes.pop(layer):
-> 1032 process_node(layer, node_data)
1033
1034 name = config.get('name')
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/network.py in process_node(layer, node_data)
989 # and building the layer if needed.
990 if input_tensors:
--> 991 layer(unpack_singleton(input_tensors), **kwargs)
992
993 def process_layer(layer_data):
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py in __call__(self, inputs, **kwargs)
472 if all([s is not None
473 for s in to_list(input_shape)]):
--> 474 output_shape = self.compute_output_shape(input_shape)
475 else:
476 if isinstance(input_shape, list):
/opt/anaconda3/lib/python3.7/site-packages/keras/engine/network.py in compute_output_shape(self, input_shape)
591 raise ValueError('Invalid input_shape argument ' +
592 str(input_shape) + ': model has ' +
--> 593 str(len(self._input_layers)) + ' tensor inputs.')
594
595 cache_key = ', '.join([str(x) for x in input_shapes])
ValueError: Invalid input_shape argument [(None, 224, 224, 3), (None, 224, 224, 3), (None, 224, 224, 3)]: model has 1 tensor inputs.
'''
'''
model_siamese = siamese_model()
from keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint('triplet_loss_function_vgg16_siamese_h512_10_128.h5', verbose=1, monitor='val_loss',save_best_only=True, mode='auto')
hist = model_siamese.fit_generator(generate_batch_siamese(batch_size=128, validation=False),epochs=1000, steps_per_epoch=int((total * 0.8) / 32),
validation_steps=int((total * 0.10) / 32),
validation_data=generate_batch_siamese(batch_size=128, validation=True), callbacks=[checkpoint], use_multiprocessing=True)
final_model = load_model("triplet_loss_function_vgg16_siamese_h100_128.h5")
'''
答案 0 :(得分:0)
尝试将用于编码生成的代码部分更改为
# Generate the encodings (feature vectors) for the two images
encoded_l = temp_model(left_input)
encoded_r = temp_model(right_input)
答案 1 :(得分:0)
这是加载嵌套模型时的常见问题,没有一个唯一的答案,但是有一些有用的链接,您可以在其中找到解决此类问题的提示。 https://github.com/keras-team/keras/pull/11847
在我的情况下,我重新定义了一个体系结构(与我的训练相同),将可训练参数设置为false,而不是使用load_models而不是load_model,它为我工作。正如我所说,没有一个答案,您必须测试并尝试其他选择。