原因:损失:nan-acc:0.0000e + 00-val_loss:nan-val_acc:0.0000e + 00 | TensorFlow 2.0 |蟒蛇

时间:2020-02-29 02:27:01

标签: python tensorflow machine-learning

我正在使用LSTM模型根据Myers-Briggs检验预测人格类型。

  • 我创建了一个(295,2(不包括标题))数据集,其中包含个性类型标签及其各自的描述。

csv文件: Dataset MBTI |Github

  • 数据集分为各自的矩阵:

    80% PRIx64 | 20% uint64_t

  • 此外,还对数据集进行了预处理:标记化,停用词和填充

但是,在培训时,显示以下内容:

(train_data, train_labels)

LSTM模型如下:

(validation_data, validation_labels)
Train on 236 samples, validate on 59 samples
Epoch 1/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 2/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 3/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 4/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 5/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 6/100
236/236 - 2s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 7/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 8/100
236/236 - 2s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 9/100
236/236 - 2s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00
Epoch 10/100
236/236 - 1s - loss: nan - acc: 0.0000e+00 - val_loss: nan - val_acc: 0.0000e+00

预期输出:

  • 我希望在训练时,准确率达到“ 95%”,并且法线对应于其余参数(损耗,val_loss,val_acc)。
  • 如果模型不正确,或者值不是您应该输入的值,请让我知道,就像其他建议一样,以便更好地理解问题并简化答案。

0 个答案:

没有答案