我已经阅读了与此问题类似的答案,但没有找到解决我目标的方法。我有一个将近150MB的大型csv
文件,格式如下:
logs.csv:
id,lat,lon,days,mode
656001,41.163172,-8.5838214,42461.0046296296,3
656001,41.163237,-8.58381,42461.0046412037,3
656001,41.1632328,-8.5838378,42461.0046527778,3
656001,41.163234,-8.5838637,42461.0046643519,3
656001,41.1632204,-8.583885,42461.0046759259,3
.....
758001,39.9966599,-8.6113725,42461.4125578704,1
758001,39.9969224,-8.6111087,42461.4125694444,1
758001,39.9972031,-8.6108471,42461.4125810185,1
....
829000,40.6022533,-7.2600605,42461.6981944444,2
829000,40.6020222,-7.2601668,42461.6982060185,2
829000,40.6017725,-7.2602641,42461.6982175926,2
829000,40.6015003,-7.2603968,42461.6982291667,2
......
863025,41.1459056,-8.6131507,42461.7629050926,0
863025,41.1459103,-8.6131553,42461.7629166667,0
863025,41.1459149,-8.6131682,42461.7629282407,0
然后我想通过id
将此数据加载为数组数组,以使每个嵌套数组都具有四列:lat, lon, days, mode
,格式如下:
[
[41.163172 -8.5838214 42461.0046296296 3]
[41.163237 -8.58381 42461.0046412037 3]
[41.1632328 -8.5838378 42461.0046527778 3]
...
[39.9966599 -8.6113725 42461.4125578704 1]
[39.9969224 -8.6111087 42461.4125694444 1]
.....
.....
[41.1459056 -8.6131507 42461.7629050926 0]
[41.1459103 -8.6131553 42461.7629166667 0]
[41.1459149 -8.6131682 42461.7629282407 0]
]
我首先将数据作为numpy ndarray
加载,如下所示:
my_data = np.genfromtxt('logs.csv', delimiter=',', skip_header=True)
my_data.shape
(22, 5)
然后尝试将其进一步处理到所需的输出(通过id
),但这会改变所需数组的形状:
#group by id
unique_id = set(my_data[:,0])
unique_id
{656001.0, 758001.0, 829000.0, 863025.0}
grouped_data = np.array([my_data[my_data[:,0]== pvalue, 1:]
for pvalue in unique_id])
grouped_data.shape
(503,)
但是我想要嵌套数组的形状,因为我要遍历它的元素。我期待着(X,4)
然后我尝试使用pandas dataframe
,所以:
data = pd.read_csv('logs.csv')
data.head()
id lat lon days mode
0 656001 41.163172 -8.583821 42461.004630 3
1 656001 41.163237 -8.583810 42461.004641 3
2 656001 41.163233 -8.583838 42461.004653 3
3 656001 41.163234 -8.583864 42461.004664 3
4 656001 41.163220 -8.583885 42461.004676 3
显然,熊猫不会产生预期的结果:
data.groupby('id').head()
id lat lon days mode
0 656001 41.163172 -8.583821 42461.004630 3
1 656001 41.163237 -8.583810 42461.004641 3
2 656001 41.163233 -8.583838 42461.004653 3
3 656001 41.163234 -8.583864 42461.004664 3
.....
我的任何尝试都不会导致所需的数组数组,如开头所示。我该怎么做?
答案 0 :(得分:1)
您可以使用列表推导对id
值进行分组,并提取该id
的每个矩阵。
[matrix.to_numpy() for _, matrix in df.groupby('id')]
# or, depending on intended use:
# np.array([matrix.to_numpy() for _, matrix in df.groupby('id')])