我一直在这里查看问题的多个版本,但是找不到我要解决的问题的答案。
问题:
我有一个Pandas数据框,其中包含一堆十进制数的数据,这些数据是通过多次实验重复(每一行)收集的,用于多种波长的光(每一列)。这些波长间隔是列标题,由于我们机器的限制,当前的波长/列之间的间隔为2.5。
我现在需要计算波长间隔为0.1而不是2.5的每一行的值。这将需要我创建一个间距为0.1的新列标题(因此,我当前的每一列之间要有24个新列),然后在每0.1步对每一行中的值进行线性插值。
有人可以帮忙吗?我完全不知道该怎么做。
到目前为止,我得到的是:
# data_in = my original Panda dataframe with experiment data.
# wavelengths (column headers) go from 400 to 900 in 2.5nm intervals.
# I want 400 to 900 in 0.1 nm intervals.
# Create a copy dataframe for generating the interpolated columns,
# copying the structure of the original file for the first 3 columns.
# (I need the first 3 columns intact for an unimportant reason)
data_interp = data_in[data_in.columns[0:3]].copy()
# Interpolate 400 to 900 nm in 0.1 nm steps for the column headers.
wave_array = np.linspace(400, 900, num=5000, endpoint=True)
# Import the interpolated numpy array as column headers in the new panda dataframe.
data_interp = pd.concat([data_interp,pd.DataFrame(columns=wave_array)])
# Use the pandas 'update' function to map any matching instances of columns and their data
# from 'data_in' to 'data_interp' (ie, import all the 2.5 nm interval data from
# the old dataframe to their proper place in the new dataframe).
data_interp.update(data_in)
现在,我有了一个新的Panda数据帧(data_interp),其中包含我所有的原始2.5 nm间隔数据,以及一个带有0.1 nm间隔标题的空列TON。
我需要用插值数据填充所有这些空单元,插值数据是根据以2.5 nm间隔显示的数据计算得出的。
欢迎任何帮助,谢谢。
编辑1:这是我的输入数据框(data_in)和新的内插数据框(data_interp)的几张照片。
data_in
:
data_interp
:
编辑2:小型示例。
# Mini data.
data_mini = [[10, 13, 11], [15, 14, 15], [19, 18, 22]]
# Convert to pandas dataframe
data_mini_pd = pd.DataFrame(data_mini, columns = [400, 402.5, 405])
# Copy new dataframe based on original dataframe
data_mini_pd_interp = data_mini_pd[data_mini_pd.columns[0:0]].copy()
# Interpolate 400 to 405 nm in 0.1 nm steps for the column headers.
wave_array_mini = np.linspace(400, 405, num=50, endpoint=True)
# Round all numbers to 1 decimal place, to prevent float placeholder overflow
# when importing to panda column headers.
wave_array_mini_round = np.around(wave_array_mini, decimals=1)
# Import the interpolated numpy array as column headers in the new panda dataframe.
data_mini_pd_interp = pd.concat([data_mini_pd_interp,pd.DataFrame(columns=wave_array_mini_round)])
# Use the pandas 'update' function to map any matching instances of columns and their data from 'data_in' to 'data_interp' (ie, import all the 2.5 nm interval
# data from the old dataframe to their proper place in the new dataframe).
data_mini_pd_interp.update(data_mini_pd)
答案 0 :(得分:0)
此解决方案有点难看,但应该可以解决问题:
##generate data
nrows = 100
cols = [x/10.0 for x in range(0, 100, 25)]
data = {c: np.random.uniform(0, 1, nrows) for c in cols}
df = pd.DataFrame(data)
interpolation_steps = 25
dfs = []
#Iterate on each interpolation pair(start, end)
for col_ind in range(0, len(cols)-1):
##Using list comparison to iterate on each row, performin np.linspace on relevant columns values and creating a dataframe based on these results(along with column names).
inter_df = pd.DataFrame([np.linspace(x, y, interpolation_steps) for x, y in
zip(df.iloc[:, col_ind], df.iloc[:, col_ind + 1])],
columns=[i/10 for i in range(int(df.columns[col_ind]*10),
int(df.columns[col_ind+1]*10), 1)])
dfs.append(inter_df)
##Merging interpolated dataframes back together into one big dataframe
full_df = pd.concat(dfs, axis=1)
##adding last column because interpolated without it
last_col = df.columns[-1]
full_df.loc[:, last_col] = df[last_col]
print(full_df.head(3).T)
答案 1 :(得分:0)
我将转置矩阵并欺骗(新)索引以使其成为DatetimeIndex-绝对值将相差1000倍,但对于数据并不重要。这样就可以只用不同的频率对数据帧进行重新采样。
在那之后,将索引转换回浮点并再次转置就足够了,以获得预期的结果。
从您的data_mini_dp
开始,可能是:
df = data_mini_pd.T.set_index(pd.to_datetime(
(data_mini_pd.columns * 10).astype(int), format='%f')
).resample('100000ns').interpolate()
df.index = df.index.strftime('%f').astype('float64')/1000
resul = df.T
给予:
400.0 400.1 400.2 400.3 400.4 400.5 400.6 400.7 400.8 400.9 401.0 401.1 401.2 401.3 401.4 401.5 401.6 401.7 401.8 401.9 402.0 402.1 402.2 402.3 402.4 402.5 402.6 402.7 402.8 402.9 403.0 403.1 403.2 403.3 403.4 403.5 403.6 403.7 403.8 403.9 404.0 404.1 404.2 404.3 404.4 404.5 404.6 404.7 404.8 404.9 405.0
0 10.0 10.12 10.24 10.36 10.48 10.6 10.72 10.84 10.96 11.08 11.2 11.32 11.44 11.56 11.68 11.8 11.92 12.04 12.16 12.28 12.4 12.52 12.64 12.76 12.88 13.0 12.92 12.84 12.76 12.68 12.6 12.52 12.44 12.36 12.28 12.2 12.12 12.04 11.96 11.88 11.8 11.72 11.64 11.56 11.48 11.4 11.32 11.24 11.16 11.08 11.0
1 15.0 14.96 14.92 14.88 14.84 14.8 14.76 14.72 14.68 14.64 14.6 14.56 14.52 14.48 14.44 14.4 14.36 14.32 14.28 14.24 14.2 14.16 14.12 14.08 14.04 14.0 14.04 14.08 14.12 14.16 14.2 14.24 14.28 14.32 14.36 14.4 14.44 14.48 14.52 14.56 14.6 14.64 14.68 14.72 14.76 14.8 14.84 14.88 14.92 14.96 15.0
2 19.0 18.96 18.92 18.88 18.84 18.8 18.76 18.72 18.68 18.64 18.6 18.56 18.52 18.48 18.44 18.4 18.36 18.32 18.28 18.24 18.2 18.16 18.12 18.08 18.04 18.0 18.16 18.32 18.48 18.64 18.8 18.96 19.12 19.28 19.44 19.6 19.76 19.92 20.08 20.24 20.4 20.56 20.72 20.88 21.04 21.2 21.36 21.52 21.68 21.84 22.0