图形模式下的GRU / RNN状态与急切执行模式下的状态

时间:2020-02-26 00:13:10

标签: tensorflow keras deep-learning

我先在急切的执行模式下然后在图形模式下编写了相同的代码。现在,我还不能弄清楚为什么在急切模式下可以正常运行时,为什么GRU状态没有保留在图形模式下。

以下是紧急模式代码:

import tensorflow as tf 
import xxhash
import numpy as np 
tf.enable_eager_execution()
rnn_units = 1024 
def hash_code(arr): 
    return xxhash.xxh64(arr).hexdigest()

model = tf.keras.Sequential([tf.keras.layers.GRU(rnn_units,
                        return_sequences=True,
                        stateful=True,
                        recurrent_initializer='glorot_uniform', batch_input_shape=[1, None, 256])])

lstm_wt = np.load('lstm_wt.npy', allow_pickle=True) # fixed weights for comparison 
lstm_re_wt = np.load('lstm_re_wt.npy', allow_pickle=True)
lstm_bias = np.load('lstm_bias.npy', allow_pickle=True)
model.layers[0].set_weights([lstm_wt, lstm_re_wt, lstm_bias])

op_embed = np.load('op_embed.npy', allow_pickle=True) # fixed input 
op_lstm = model(op_embed)
print(hash_code(op_lstm.numpy()))

op_lstm = model(op_embed)
print(hash_code(op_lstm.numpy()))

model.layers[0].reset_states() # now reset the state, you'll get back the initial output. 
op_lstm = model(op_embed)
print(hash_code(op_lstm.numpy()))

此代码的输出:

d092fdb4739588a3
cdfdf8b8e292c6e8
d092fdb4739588a3

现在,图形模型代码:

import tensorflow as tf 
import xxhas
import numpy as np 

# checking lstm 
op_embed = np.load('op_embed.npy', allow_pickle=True)
# load op_embed, lstm weights 
lstm_wt = np.load('lstm_wt.npy', allow_pickle=True)
lstm_re_wt = np.load('lstm_re_wt.npy', allow_pickle=True)
lstm_bias = np.load('lstm_bias.npy', allow_pickle=True)

rnn_units = 1024 
layers = tf.keras.layers.GRU(rnn_units,
                        return_sequences=True,
                        stateful=True,
                        recurrent_initializer='glorot_uniform')
x_placeholder = tf.placeholder(shape=op_embed.shape, dtype=tf.float32)
op_lstm = layers(x_placeholder)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
layers.set_weights([lstm_wt, lstm_re_wt, lstm_bias])
tf.assign(layers.weights[0],lstm_wt ).eval(sess)
tf.assign(layers.weights[1], lstm_re_wt).eval(sess)
tf.assign(layers.weights[2], lstm_bias).eval(sess)
print('keras op hash',xxhash.xxh64(sess.run(op_lstm, feed_dict={x_placeholder:op_embed})).hexdigest())
print('keras op hash',xxhash.xxh64(sess.run(op_lstm, feed_dict={x_placeholder:op_embed})).hexdigest())

输出:

keras op hash d092fdb4739588a3
keras op hash d092fdb4739588a3

在图形模式下如何解决此歧义并保留状态的任何见解? 之前有人问过类似的问题,但尚未回答。 Statefulness in eager mode vs non-eager mode

1 个答案:

答案 0 :(得分:0)

即使是在问题中提供的Link中,也要在此处(答案部分)指定解决方案,以社区的利益

Recurrent Neural NetworkRNNGRULSTM)在state / Non-Eager-Mode中执行时丢失了Graph-Mode默认。

如果要保留state,则需要在Initial State调用期间传递RNN,如下所示:

current_state = np.zeros((1,1))
state_placeholder = tf.placeholder(tf.float32, shape=[1, 1])
output, state = rnn(x, initial_state=state_placeholder)

然后,在执行输出时,除了State的{​​{1}}之外,我们还需要传递Input

代码,

feed_dict

可以替换为

print('keras op hash',xxhash.xxh64(sess.run(op_lstm, feed_dict={x_placeholder:op_embed})).hexdigest())

希望这会有所帮助。学习愉快!