根据条件向pandas df添加新列

时间:2020-02-25 11:53:10

标签: python pandas series

我有以下数据集:

ID   Asset   Boolean
1     "A"    True  
1     "B"    False  
1     "B"    False   
2     "A"    True
3     "A"    True
3     "A"    True
3     "B"    False
3     "B"    False
4     "A"    True
4     "A"    True
5     "A"    True
5     "B"    False

我想添加另一列,只有在同一Boolean的列ID中的所有值都评估为True的情况下,才应将其评估为True。 像这样:

ID   Asset   Boolean  Check
1     "A"    True     False
1     "B"    False    False
1     "B"    False    False
2     "A"    True     True
3     "A"    True     False
3     "A"    True     False
3     "B"    False    False
3     "B"    False    False
4     "A"    True     True
4     "A"    True     True
5     "A"    True     False
5     "B"    False    False

我想保留原始数据集作为过滤器选项。 我不知道如何在考虑ID列的情况下遍历Boolean列。

1 个答案:

答案 0 :(得分:4)

您可以GroupBytransformall

df['Check'] = df.groupby('ID').Boolean.transform('all')

print(df)

    ID Asset  Boolean  Check
0    1     A     True  False
1    1     B    False  False
2    1     B    False  False
3    2     A     True   True
4    3     A     True  False
5    3     A     True  False
6    3     B    False  False
7    3     B    False  False
8    4     A     True   True
9    4     A     True   True
10   5     A     True  False
11   5     B    False  False