目标是构建一个函数,该函数使用julia在给定的字符串中检查所有方括号是否正确打开和关闭。所以,
"{abc()([[def]])()}"
应返回true,而类似
"{(bracket order mixed up here!})[and this bracket doesn't close!"
应返回false。
我有两个版本的函数。 为什么我的版本I快10%?
function matching_brackets_old(s::AbstractString)
close_open_map = Dict('}' => '{', ')' => '(', ']' => '[')
order_arr = []
for char in s
if char in values(close_open_map)
push!(order_arr, char)
elseif (char in keys(close_open_map)) &&
(isempty(order_arr) || (close_open_map[char] != pop!(order_arr)))
return false
end
end
return isempty(order_arr)
end
在这里,我用一个do块替换for循环:
function matching_brackets(s::AbstractString)
close_open_map = Dict('}' => '{', ')' => '(', ']' => '[')
order_arr = []
all_correct = all(s) do char
if char in values(close_open_map)
push!(order_arr, char)
elseif (char in keys(close_open_map)) &&
(isempty(order_arr) || (close_open_map[char] != pop!(order_arr)))
return false
end
return true
end
return all_correct && isempty(order_arr)
end
使用BenchmarkTools的@benchmark作为字符串"{()()[()]()}"
和"{()()[())]()}"
,在比较最短执行时间时,两个字符串的速度都降低了约10%。
版本信息:
Julia Version 1.3.1
Commit 2d5741174c (2019-12-30 21:36 UTC)
Platform Info:
OS: macOS (x86_64-apple-darwin18.6.0)
CPU: Intel(R) Core(TM) i5-4260U CPU @ 1.40GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, haswell)
计时代码:
using BenchmarkTools
benchmark_strings = ["{()()[()]()}", "{()()[())]()}"]
for s in benchmark_strings
b_old = @benchmark matching_brackets_old("$s") samples=100000 seconds=30
b_new = @benchmark matching_brackets("$s") samples=100000 seconds=30
println("For String=", s)
println(b_old)
println(b_new)
println(judge(minimum(b_new), minimum(b_old)))
println("Result: ", matching_brackets(s))
end
有结果:
For String={()()[()]()}
Trial(8.177 μs)
Trial(9.197 μs)
TrialJudgement(+12.48% => regression)
Result: true
For String={()()[())]()}
Trial(8.197 μs)
Trial(9.202 μs)
TrialJudgement(+12.27% => regression)
Result: false
我在审判判决中混合了命令,因此版本1更快,正如FrançoisFévotte所建议的那样。我的问题仍然是:为什么?
答案 0 :(得分:4)
现在 data2=data.frame("student"=c(1,1,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5),
"score"=c(1,2,1,1,2,3,2,NA,3,NA,1,3,2,1,1,3,NA,2),
"drop"=c(0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0),
"WANT"=c(1,2,1,1,2,3,3,4,3,4,1,3,3,3,1,3,3,3))
的错误已得到解决,答案可能是通常的警告:函数调用(在这种情况下是由于传递给judge
的闭包而导致的)已经相当优化,但并非针对自由。
我建议要获得真正的改进,除了使堆栈类型稳定(这没什么大不了的)之外,还可以通过在{{上调用all
1}}和in
。只需一次就可以,而无需字典:
values
通过在元组上展开内部循环,可以节省更多时间:
keys
这有点丑陋,当然也不能很好地扩展。我的基准测试(const MATCHING_PAIRS = ('{' => '}', '(' => ')', '[' => ']')
function matching_brackets(s::AbstractString)
stack = Vector{eltype(s)}()
for c in s
for (open, close) in MATCHING_PAIRS
if c == open
push!(stack, c)
elseif c == close
if isempty(stack) || (pop!(stack) != open)
return false
end
end
end
end
return isempty(stack)
end
是您的第二个版本,function matching_brackets_unrolled(s::AbstractString)
stack = Vector{eltype(s)}()
for c in s
if (c == '(') || (c == '[') || (c == '{')
push!(stack, c)
elseif (c == ')')
if isempty(stack) || (pop!(stack) != '(')
return false
end
elseif (c == ']')
if isempty(stack) || (pop!(stack) != '[')
return false
end
elseif (c == '}')
if isempty(stack) || (pop!(stack) != '{')
return false
end
end
end
return isempty(stack)
end
是您的第二个版本):
matching_brackets_new
更新:如果您在第一个版本中插入matching_brackets
到真正以避免不必要的循环,则使用好的代码几乎无法区分时间:
julia> versioninfo()
Julia Version 1.3.1
Commit 2d5741174c (2019-12-30 21:36 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, nehalem)
# NOT MATCHING
julia> @benchmark matching_brackets_new("{()()[())]()}")
BenchmarkTools.Trial:
memory estimate: 784 bytes
allocs estimate: 16
--------------
minimum time: 674.844 ns (0.00% GC)
median time: 736.200 ns (0.00% GC)
mean time: 800.935 ns (6.54% GC)
maximum time: 23.831 μs (96.16% GC)
--------------
samples: 10000
evals/sample: 160
julia> @benchmark matching_brackets_old("{()()[())]()}")
BenchmarkTools.Trial:
memory estimate: 752 bytes
allocs estimate: 15
--------------
minimum time: 630.743 ns (0.00% GC)
median time: 681.725 ns (0.00% GC)
mean time: 753.937 ns (6.41% GC)
maximum time: 23.056 μs (94.19% GC)
--------------
samples: 10000
evals/sample: 171
julia> @benchmark matching_brackets("{()()[())]()}")
BenchmarkTools.Trial:
memory estimate: 112 bytes
allocs estimate: 2
--------------
minimum time: 164.883 ns (0.00% GC)
median time: 172.900 ns (0.00% GC)
mean time: 186.523 ns (4.33% GC)
maximum time: 5.428 μs (96.54% GC)
--------------
samples: 10000
evals/sample: 759
julia> @benchmark matching_brackets_unrolled("{()()[())]()}")
BenchmarkTools.Trial:
memory estimate: 112 bytes
allocs estimate: 2
--------------
minimum time: 134.459 ns (0.00% GC)
median time: 140.292 ns (0.00% GC)
mean time: 150.067 ns (5.84% GC)
maximum time: 5.095 μs (96.56% GC)
--------------
samples: 10000
evals/sample: 878
# MATCHING
julia> @benchmark matching_brackets_old("{()()[()]()}")
BenchmarkTools.Trial:
memory estimate: 800 bytes
allocs estimate: 18
--------------
minimum time: 786.358 ns (0.00% GC)
median time: 833.873 ns (0.00% GC)
mean time: 904.437 ns (5.43% GC)
maximum time: 29.355 μs (96.88% GC)
--------------
samples: 10000
evals/sample: 106
julia> @benchmark matching_brackets_new("{()()[()]()}")
BenchmarkTools.Trial:
memory estimate: 832 bytes
allocs estimate: 19
--------------
minimum time: 823.597 ns (0.00% GC)
median time: 892.506 ns (0.00% GC)
mean time: 981.381 ns (5.98% GC)
maximum time: 47.308 μs (97.84% GC)
--------------
samples: 10000
evals/sample: 77
julia> @benchmark matching_brackets("{()()[()]()}")
BenchmarkTools.Trial:
memory estimate: 112 bytes
allocs estimate: 2
--------------
minimum time: 206.062 ns (0.00% GC)
median time: 214.481 ns (0.00% GC)
mean time: 227.385 ns (3.38% GC)
maximum time: 6.890 μs (96.22% GC)
--------------
samples: 10000
evals/sample: 535
julia> @benchmark matching_brackets_unrolled("{()()[()]()}")
BenchmarkTools.Trial:
memory estimate: 112 bytes
allocs estimate: 2
--------------
minimum time: 160.186 ns (0.00% GC)
median time: 164.752 ns (0.00% GC)
mean time: 180.794 ns (4.95% GC)
maximum time: 5.751 μs (97.03% GC)
--------------
samples: 10000
evals/sample: 800
使用
break
答案 1 :(得分:2)
我在计算机上没有看到相同的结果:在我的测试中,两个字符串的版本I都更快:
julia> versioninfo()
Julia Version 1.3.0
Commit 46ce4d7933 (2019-11-26 06:09 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
Environment:
JULIA_PROJECT = @.
julia> @btime matching_brackets_old("{()()[()]()}")
716.443 ns (18 allocations: 800 bytes)
true
julia> @btime matching_brackets("{()()[()]()}")
761.434 ns (19 allocations: 832 bytes)
true
julia> @btime matching_brackets_old("{()()[())]()}")
574.847 ns (15 allocations: 752 bytes)
false
julia> @btime matching_brackets("{()()[())]()}")
612.793 ns (16 allocations: 784 bytes)
false
我会认为(但这是一个疯狂的猜测),当字符串大小增加时,for循环与高阶函数之间的差异将变得越来越小。
但是,我鼓励您更仔细地研究order_arr
变量:目前编写的变量的类型为Vector{Any}
,与任何抽象类型值的容器一样,它会损害性能。通过具体键入order_arr
的元素,以下版本的性能更好:
function matching_brackets_new(s::AbstractString)
close_open_map = Dict('}' => '{', ')' => '(', ']' => '[')
# Make sure the compiler knows about the type of elements in order_arr
order_arr = eltype(s)[] # or order_arr = Char[]
for char in s
if char in values(close_open_map)
push!(order_arr, char)
elseif (char in keys(close_open_map)) &&
(isempty(order_arr) || (close_open_map[char] != pop!(order_arr)))
return false
end
end
return isempty(order_arr)
end
收益:
julia> @btime matching_brackets_new("{()()[()]()}")
570.641 ns (18 allocations: 784 bytes)
true
julia> @btime matching_brackets_new("{()()[())]()}")
447.758 ns (15 allocations: 736 bytes)
false