从已保存的.h5 cnn保存的模型中加载val_acc和val_loss

时间:2020-02-21 19:26:39

标签: python python-3.x tensorflow keras

我已经使用Keras构建了CNN分类器,绘制了3个时期内的验证准确性和验证损失历史记录,然后使用classifier.save(“ name.h5 :)保存了模型。

稍后我已成功使用.load()命令加载了分类器。但是,我无法重新加载验证准确性和验证损失。有什么办法吗?

我尝试了validate()函数,但没有用。

from keras.models import Sequential
from keras.layers import Conv2D,Activation,MaxPooling2D,Dense,Flatten,Dropout
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from IPython.display import display
import matplotlib.pyplot as plt
from PIL import Image
from keras.models import load_model
from sklearn.metrics import classification_report, confusion_matrix

classifier = Sequential()
classifier.add(Conv2D(32,(3,3),input_shape=(64,64,3)))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size =(2,2)))
classifier.add(Conv2D(32,(3,3)))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size =(2,2)))
classifier.add(Conv2D(64,(3,3)))
classifier.add(Activation('relu'))
classifier.add(MaxPooling2D(pool_size =(2,2)))
classifier.add(Flatten())
classifier.add(Dense(64))
classifier.add(Activation('relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(2))
classifier.add(Activation('softmax'))
classifier.summary()
classifier.compile(optimizer ='rmsprop',
                   loss ='categorical_crossentropy',
                   metrics =['accuracy'])
train_datagen = ImageDataGenerator(rescale =1./255,
                                   shear_range =0.2,
                                   zoom_range = 0.2,
                                   horizontal_flip =True)
test_datagen = ImageDataGenerator(rescale = 1./255)

batchsize=60
training_set = train_datagen.flow_from_directory('/home/osboxes/Downloads/Downloads/dogs-vs-cats/train/',
                                                target_size=(64,64),
                                                batch_size= batchsize,
                                                class_mode='categorical')

test_set = test_datagen.flow_from_directory('/home/osboxes/Downloads/Downloads/dogs-vs-cats/test/',
                                           target_size = (64,64),
                                           batch_size = batchsize,
                       shuffle=False,
                                           class_mode ='categorical')
history=classifier.fit_generator(training_set,
                        steps_per_epoch =9000 // batchsize,
                        epochs = 3,
                        validation_data =test_set,
                        validation_steps = 4500 // batchsize)

classifier.save('my_model3.h5')
Y_pred = classifier.predict_generator(test_set, steps=4500 // batchsize)
y_pred = np.argmax(Y_pred, axis=1)
print('Confusion Matrix')
print(confusion_matrix(test_set.classes, y_pred))
print('Classification Report')
target_names = test_set.classes
class_labels = list(test_set.class_indices.keys()) 
target_names = ['cats', 'dogs'] 
report = classification_report(test_set.classes, y_pred, target_names=class_labels)
print(report) 

# summarize history for accuracy
#plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

1 个答案:

答案 0 :(得分:1)

恐怕不是,历史记录是一个对象,它是fit()函数的乘积。 该模型本身不会保留此信息,因此不会保存。

获取历史记录的唯一方法是专门保存它。

否则,如果在初次训练模型时设置了随机种子,则可能也会得到相同的结果(历史)。然后,您可以使用相同的种子重复该过程并获得相同的结果。