我有一个自修改的汽车识别模型,取自https://github.com/Helias/Car-Model-Recognition。我使用Cuda
和Pytorch:1.4.0
。但是,即使我尝试在以前的question上使用答案,它仍然不希望与BATCH_SIZE
> = 7一起使用。发生同样的事情:
CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 4.00 GiB total capacity; 2.74 GiB already allocated; 7.80 MiB free; 2.96 GiB reserved in total by PyTorch)
如果我增加BATCH_SIZE
,pytorch会给我更多,但还不够:
BATCH_SIZE = 256
CUDA out of memory. Tried to allocate 196.00 MiB (GPU 0; 4.00 GiB total capacity; 2.85 GiB already allocated; 93.80 MiB free; 2.87 GiB reserved in total by PyTorch)
BATCH_SIZE = 512
CUDA out of memory. Tried to allocate 1.53 GiB (GPU 0; 4.00 GiB total capacity; 2.04 GiB already allocated; 927.80 MiB free; 2.06 GiB reserved in total by PyTorch)
我的代码如下: main.py
from dataset import torch, os, LocalDataset, transforms, np, get_class, num_classes, preprocessing, Image, m, s, dataset_main
from config import *
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import StepLR
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.models import resnet
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from matplotlib import pyplot as plt
from numpy import unravel_index
import gc
import argparse
import cv2 as cv2
cuda_available = torch.cuda.is_available()
torch.cuda.set_device(0)
def train_model(model_name, model, train_loader, test_loader, lr=LEARNING_RATE, epochs=EPOCHS, momentum=MOMENTUM, weight_decay=0,):
if not os.path.exists(RESULTS_PATH + "/" + model_name):
os.makedirs(RESULTS_PATH + "/" + model_name)
criterion = nn.CrossEntropyLoss()
optimizer = SGD(model.parameters(), lr, momentum=momentum, weight_decay=weight_decay)
loaders = {'train':train_loader, 'test':test_loader}
losses = {'train':[], 'test':[]}
accuracies = {'train':[], 'test':[]}
#testing variables
y_testing = []
preds = []
if USE_CUDA and cuda_available:
model=model.cuda()
for e in range(epochs):
for mode in ['train', 'test']:
if mode=='train':
model.train()
else:
model.eval()
epoch_loss = 0
epoch_acc = 0
samples = 0
try:
for i, batch in enumerate(loaders[mode]):
# convert tensor to variable
x=Variable(batch['image'], requires_grad=(mode=='train'))
y=Variable(batch['label'])
if USE_CUDA and cuda_available:
x = x.cuda()
y = y.cuda()
output = model(x)
l = criterion(output, y) # loss
if mode=='train':
l.backward()
optimizer.step()
optimizer.zero_grad()
else:
y_testing.extend(y.data.tolist())
preds.extend(output.max(1)[1].tolist())
if USE_CUDA and cuda_available:
acc = accuracy_score(y.data.cuda().cpu().numpy(), output.max(1)[1].cuda().cpu().numpy())
else:
acc = accuracy_score(y.data, output.max(1)[1])
epoch_loss += l.data.item()*x.shape[0] # l.data[0]
epoch_acc += acc*x.shape[0]
samples += x.shape[0]
print ("\r[%s] Epoch %d/%d. Iteration %d/%d. Loss: %0.2f. Accuracy: %0.2f Learning Rate: %s" % \
(mode, e+1, epochs, i, len(loaders[mode]), epoch_loss/samples, epoch_acc/samples, 'test'))
if DEBUG and i == 2:
break
except Exception as err:
print ("\n\n######### ERROR #######")
print (str(err))
print ("\n\n######### batch #######")
print (batch['img_name'])
print ("\n\n")
epoch_loss /= samples
epoch_acc /= samples
losses[mode].append(epoch_loss)
accuracies[mode].append(epoch_acc)
print ("\r[%s] Epoch %d/%d. Iteration %d/%d. Loss: %0.2f. Accuracy: %0.2f Learning Rate: %s" % \
(mode, e+1, epochs, i, len(loaders[mode]), epoch_loss, epoch_acc, 'test'))
torch.save(model.state_dict(), str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + ".pt")
return model, (losses, accuracies), y_testing, preds
def test_model(model_name, model, test_loader):
model.load_state_dict(torch.load(str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + ".pt"))
if USE_CUDA and cuda_available:
model = model.cuda()
model.eval()
preds = []
gts = []
#debug
i = 0
for batch in test_loader:
x = Variable(batch['image'])
if USE_CUDA and cuda_available:
x = x.cuda()
pred = model(x).data.cuda().cpu().numpy().copy()
else:
pred = model(x).data.numpy().copy()
gt = batch['label'].numpy().copy()
preds.append(pred)
gts.append(gt)
# debug
if DEBUG:
if i == 2:
break
else:
i+=1
return np.concatenate(preds), np.concatenate(gts)
def write_stats(model_name, y, predictions, gts, predictions2):
if not os.path.exists(RESULTS_PATH + "/" + model_name):
os.makedirs(RESULTS_PATH + "/" + model_name)
acc = accuracy_score(gts, predictions2.argmax(1))
cm = confusion_matrix(y, predictions)
if DEBUG:
score = "00 F1_SCORE 00"
else:
score = f1_score(y, predictions, average=None)
file = open(str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + "_stats.txt", "w+")
file.write ("Accuracy: " + str(acc) + "\n\n")
file.write("Confusion Matrix: \n" + str(cm) + "\n\n")
file.write("F1 Score: \n" + str(score))
file.close()
def plot_logs_classification(model_name, logs):
if not os.path.exists(RESULTS_PATH + "/" + model_name):
os.makedirs(RESULTS_PATH + "/" + model_name)
training_losses, training_accuracies, test_losses, test_accuracies = \
logs[0]['train'], logs[1]['train'], logs[0]['test'], logs[1]['test']
plt.figure(figsize=(18,6))
plt.subplot(121)
plt.plot(training_losses)
plt.plot(test_losses)
plt.legend(['Training Loss','Test Losses'])
plt.grid()
plt.subplot(122)
plt.plot(training_accuracies)
plt.plot(test_accuracies)
plt.legend(['Training Accuracy','Test Accuracy'])
plt.grid()
#plt.show()
plt.savefig(str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + "_graph.png")
def train_model_iter(model_name, model, args, training_set_loader, validation_set_loader, weight_decay=0):
if args.train:
model, loss_acc, y_testing, preds = train_model(model_name=model_name, model=model, train_loader=training_set_loader, test_loader=validation_set_loader, weight_decay=weight_decay)
preds_test, gts = test_model(model_name, model=model, test_loader=validation_set_loader)
write_stats(model_name, y_testing, preds, gts, preds_test)
plot_logs_classification(model_name, loss_acc)
gc.collect()
def main():
torch.cuda.empty_cache()
print('main')
print(m, s)
parser = argparse.ArgumentParser(description='car model recognition')
parser.add_argument("-i", "--input", action="store", dest="inp", help="Take a sample image and classify it", type=str)
parser.add_argument("-t", "--train", action="store_true", help="Run the training of the model")
parser.add_argument("-p", "--preprocess", action="store_true", help="Update the train and test csv files with the new images in dataset, used this if you added new images in dataset")
args = parser.parse_args()
if args.preprocess:
print ("Preprocessing..")
preprocessing()
print ("Preprocessing finished!")
print(cuda_available)
# directory results
if not os.path.exists(RESULTS_PATH):
os.makedirs(RESULTS_PATH)
# Load dataset
mean=m
std_dev=s
transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean, std_dev)])
training_set = LocalDataset(IMAGES_PATH, TRAINING_PATH, transform=transform)
validation_set = LocalDataset(IMAGES_PATH, VALIDATION_PATH, transform=transform)
training_set_loader = DataLoader(dataset=training_set, batch_size=BATCH_SIZE, num_workers=8, shuffle=True)
validation_set_loader = DataLoader(dataset=validation_set, batch_size=BATCH_SIZE, num_workers=8, shuffle=False)
classes = {"num_classes": len(num_classes)}
torch.cuda.empty_cache()
resnet152_model = resnet.resnet152(pretrained=False, **classes)
train_model_iter("resnet152", resnet152_model, args, training_set_loader, validation_set_loader)
model_name="resnet152"
model=resnet152_model
if args.inp:
print ("input: ", args.inp)
image_path = args.inp
im = Image.open(image_path).convert("RGB")
im = transform(im)
print (str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + ".pt")
model.load_state_dict(torch.load(str(RESULTS_PATH) + "/" + str(model_name) + "/" + str(model_name) + ".pt"))
if USE_CUDA and cuda_available:
model = model.cuda()
model.eval()
x = Variable(im.unsqueeze(0))
if USE_CUDA and cuda_available:
x = x.cuda()
pred = model(x).data.cuda().cpu().numpy().copy()
else:
pred = model(x).data.numpy().copy()
print (pred)
idx_max_pred = np.argmax(pred)
idx_classes = idx_max_pred % classes["num_classes"]
print(get_class(idx_classes))
if __name__ == '__main__':
print('main1')
result = dataset_main()
m = result[0]
s = result[1]
num_classes = result[2]
torch.cuda.empty_cache()
main()
dataset.py
import numpy as np
import torch
import os
import cv2 as cv2
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image
Image.LOAD_TRUNCATED_IMAGES = True
from os import path
from glob import glob
import random
from config import *
num_classes = { 'ford_explorer': 0, 'nissan_altima': 1, 'volkswagen_jetta': 2 }
# read mean and dev. standard pre-computed
m = 0
s = 0
def dataset_main():
# dirs = glob(IMAGES_PATH + "/*/")
# i = 0
# for d in dirs:
# d = d.replace(IMAGES_PATH, "")
# d = d.replace("/", "")
# if " " in d:
# d = d.replace(" ", "_")
# num_classes[d] = i
# i+=1
print ("Classes: ")
print (num_classes)
print ("")
if os.path.isfile('./mean_devstd.txt'):
m_s = open("mean_devstd.txt", "r").read()
if "," in m_s:
m_s = m_s.replace("\n", "")
m_s = m_s.replace("tensor", "")
m_s = m_s.replace("(", "")
m_s = m_s.replace(")", "")
m_s = m_s.split(",")
m = torch.Tensor( [float(m_s[0]), float(m_s[1]), float(m_s[2])] )
s = torch.Tensor( [float(m_s[3]), float(m_s[4]), float(m_s[5])] )
return m, s, num_classes
def get_class(idx):
#print (num_classes)
for key in num_classes:
if idx == num_classes[key]:
return key
def preprocessing():
train_csv = ""
test_csv = ""
train_csv_supp = []
test_csv_supp = []
class_files_training = []
class_files_testing = []
for key in num_classes:
if " " in key:
os.rename(IMAGES_PATH+"/"+key, IMAGES_PATH+"/"+key.replace(" ", "_"))
key = key.replace(" ", "_")
class_files = glob(IMAGES_PATH+"/"+str(key)+"/*")
class_files = [w.replace(IMAGES_PATH+"/"+str(key)+"/", "") for w in class_files]
class_files.sort()
class_files_training = class_files[: int(len(class_files)*.66)] # get 66% class images fo training
class_files_testing = class_files[int(len(class_files)*.66)+1 :] # get 33% class images fo testing
for f in class_files_training:
if "," in f or "#" in f or " " in f:
tmp_f = f.replace(",", "")
tmp_f = tmp_f.replace("#", "")
tmp_f = tmp_f.replace(" ", "_")
os.rename(IMAGES_PATH+"/"+key+"/"+f, IMAGES_PATH+"/"+key+"/"+tmp_f)
f = tmp_f
train_csv_supp.append(f + ","+str(key))
for f in class_files_testing:
if "," in f or "#" in f or " " in f:
tmp_f = f.replace(",", "")
tmp_f = tmp_f.replace("#", "")
tmp_f = tmp_f.replace(" ", "_")
os.rename(IMAGES_PATH+"/"+key+"/"+f, IMAGES_PATH+"/"+key+"/"+tmp_f)
f = tmp_f
test_csv_supp.append(f + ","+str(key))
random.shuffle(train_csv_supp)
random.shuffle(test_csv_supp)
for t in train_csv_supp:
train_csv += t + "\n"
for t in test_csv_supp:
test_csv += t + "\n"
train_csv_file = open("train_file.csv", "w+")
train_csv_file.write(train_csv)
train_csv_file.close()
test_csv_file = open("test_file.csv", "w+")
test_csv_file.write(test_csv)
test_csv_file.close()
# Algorithms to calculate mean and standard_deviation
print("Loading dataset...")
dataset = LocalDataset(IMAGES_PATH, TRAINING_PATH, transform=transforms.ToTensor())
print("Calculating mean & dev std...")
m = torch.zeros(3) # Mean
s = torch.zeros(3) # Standard Deviation
for sample in dataset:
m += sample['image'].sum(1).sum(1)
s += ((sample['image']-m.view(3,1,1))**2).sum(1).sum(1)
m /= len(dataset)*256*144
s = torch.sqrt(s/(len(dataset)*256*144))
print("Calculated mean and standard deviation!")
str_m = str(m[0])+","+str(m[1])+","+str(m[2])
str_s = str(s[0])+","+str(s[1])+","+str(s[2])
file = open("mean_devstd.txt", "w+")
file.write(str(str_m)+","+str(str_s))
file.close()
#preprocessing()
class LocalDataset(Dataset):
def __init__(self, base_path, txt_list, transform=None):
self.base_path=base_path
self.images = np.loadtxt(txt_list,delimiter=',',dtype='str') # use np.genfrom() instead of np.loadtxt() to skip errors
self.transform = transform
def __getitem__(self, index):
f,c = self.images[index]
image_path = path.join(self.base_path + "/" + str(c), f)
# image_path = path.join(str(c), f)
im = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
if self.transform is not None:
im = self.transform(Image.fromarray(im))
label = num_classes[c]
return { 'image' : im, 'label':label, 'img_name': f }
def __len__(self):
return len(self.images)
我不知道我的gpu出现在哪里,因为一切似乎都正常,这只是视频卡中的问题吗?我有GTX 1050 TI,它应该能很好地工作