我在情感分析和pos标记任务上微调了两个单独的bert模型(bert-base-uncase)。现在,我想将pos标记器的输出(批处理,seqlength,hiddensize)作为情感模型的输入。原始的基于bert-base的模型位于``bertModel /''文件夹中,该文件夹包含'model.bin'和' config.json”。这是我的代码:
class DeepSequentialModel(nn.Module):
def __init__(self, sentiment_model_file, postag_model_file, device):
super(DeepSequentialModel, self).__init__()
self.sentiment_model = SentimentModel().to(device)
self.sentiment_model.load_state_dict(torch.load(sentiment_model_file, map_location=device))
self.postag_model = PosTagModel().to(device)
self.postag_model.load_state_dict(torch.load(postag_model_file, map_location=device))
self.classificationLayer = nn.Linear(768, 1)
def forward(self, seq, attn_masks):
postag_context = self.postag_model(seq, attn_masks)
sent_context = self.sentiment_model(postag_context, attn_masks)
logits = self.classificationLayer(sent_context)
return logits
class PosTagModel(nn.Module):
def __init__(self,):
super(PosTagModel, self).__init__()
self.bert_layer = BertModel.from_pretrained('bertModel/')
self.classificationLayer = nn.Linear(768, 43)
def forward(self, seq, attn_masks):
cont_reps, _ = self.bert_layer(seq, attention_mask=attn_masks)
return cont_reps
class SentimentModel(nn.Module):
def __init__(self,):
super(SentimentModel, self).__init__()
self.bert_layer = BertModel.from_pretrained('bertModel/')
self.cls_layer = nn.Linear(768, 1)
def forward(self, input, attn_masks):
cont_reps, _ = self.bert_layer(encoder_hidden_states=input, encoder_attention_mask=attn_masks)
cls_rep = cont_reps[:, 0]
return cls_rep
但是出现以下错误。如果有人可以帮助我,我将不胜感激。谢谢!
cont_reps, _ = self.bert_layer(encoder_hidden_states=input, encoder_attention_mask=attn_masks)
result = self.forward(*input, **kwargs)
TypeError: forward() got an unexpected keyword argument 'encoder_hidden_states'
答案 0 :(得分:1)
也可以将其表达为答案,并使其对以后的访问者正确可见,为此,请使用does not support these arguments in version 2.1.1的转换器first possible in version 2.2.0或任何更早的版本。请注意,我评论中的链接实际上指向一个不同的转发功能,但除此之外,这一点仍然成立。
将forward()
传递到encoder_hidden_states
是{{3}}。