在此函数中,exs
被假定为浮点数列表。它代表了我所有训练示例的列表,每个示例都是一个浮动列表(长度num_vars
),代表感知器输入。假设target
是浮点列表(长度num_vars
),代表目标函数的系数。
def gradDesc(exs, target, num_vars, n=0.5, its=256):
import random
weights = []
# Create and initialize delWeights to 0. Make its size num_vars.
delWeights = [0.0]*num_vars
# Initializes the weights to a real number in [-1,1]. Also makes weights
# contain num_vars entries.
for i in range(num_vars):
weights.append(random.uniform(-1,1))
# To make the printouts look nicer
print("Iteration\tError")
print("---------\t-----")
for i in range(its):
# Reset delWeights to 0
for j in range(num_vars):
delWeights[j] = 0
for e in exs:
# Plug e into the current hypothesis and get the output.
output = test_hypo(weights, e, num_vars)
print("delWeights: ", delWeights)
for dw in delWeights:
print("type(dw): ", type(dw))
delWeights[dw] = delWeights[dw] + n*(test_hypo(target, e, num_vars) - output)*e[dw]
for w in weights:
weights[w] = weights[w] + delWeights[dw]
# Print out the error every tenth iteration
if i % 10 == 0:
print(i + "\t" + train_err(exs, target, weights, num_vars))
# Print out the final hypothesis
print(i + "\t" + train_err(exs, target, weights, num_vars))
return weights
问题是,当我尝试在给定(有限)测试输入的情况下运行此程序时
trainers =
[[1, 2.7902232015508766, -4.624194135789617],
[1, -7.964359679418456, 2.1940274082288624],
[1, 8.445941538761794, -8.86567924774781],
... other sub-lists following this same format ...]
和
target = [-2, 1, 2]
我得到这个奇怪的输出:
gradDesc(trainers, target, num_vars)
Iteration Error
--------- -----
delWeights: [0, 0, 0]
type(dw): <class 'int'>
type(dw): <class 'int'>
type(dw): <class 'int'>
delWeights: [0.0, 0, 0]
type(dw): <class 'float'>
Traceback (most recent call last):
File "<ipython-input-19-97298b385113>", line 1, in <module>
gradDesc(trainers, target, num_vars)
File "C:/Users/Me/.spyder-py3/Machine Learning/gradDesc.py", line 107, in gradDesc
delWeights[dw] = delWeights[dw] + n*(test_hypo(target, e, num_vars) - output)*e[dw]
TypeError: list indices must be integers or slices, not float
所以我的问题是:为什么dw
的类型在通过for e in exs
循环的第二次迭代中从int变为float?
答案 0 :(得分:0)
您是要使用delWeight
而不是for i in range(len(delWeights))
遍历for dw in delWeights
的索引吗?
for dw in delWeights
遍历delWeights
中的所有值,因此循环的第一次迭代可能为delWeights
中的delWeights[dw] + n*(test_hypo(target, e, num_vars) - output)*e[dw]
个索引之一分配了浮点数。>
答案 1 :(得分:0)
delWeights[dw] = delWeights[dw] + n*(test_hypo(target, e, num_vars) - output)*e[dw]
将delWeights[dw]
设置为浮点数,因为e[dw]
是浮点数。因此,下次您执行for dw in delWeights:
循环时,dw
是一个浮点数。
使用delWeights
的元素作为索引没有意义。如果要遍历列表并获取索引,则应使用enumerate()
for i, dw in enumerate(delWeights):
delWeights[i] = dw + n*(test_hypo(target, e, num_vars) - output)*e[i]