跨多列排序和平衡

时间:2011-05-17 03:42:47

标签: ruby algorithm optimization knapsack-problem

问题

我有一个看起来像这样的哈希数据。

{ "GROUP_A" => [22, 440],
"GROUP_B" => [14, 70],
"GROUP_C" => [60, 620],
"GROUP_D" => [174, 40],
"GROUP_E" => [4, 12]
# ...few hundred more
}

GROUP_A有22个帐户,他们正在使用440GB的数据......依此类推。这些群体中有几百个。有些帐户有很多帐户,但使用的存储空间非常少,有些只有少量用户并且使用了很多存储空间,有些只是平均存储空间。

我想要将这些帐户组放入X个桶(服务器),并且我希望每个存储桶的帐户数大致相同,并且每个存储桶也包含大致相同数量的数据。组的数量并不重要,所以如果一个桶有1组1000个账户使用500GB的数据而下一个桶有10组97个账户(总共970个)使用450GB的数据......我称之为好。 / p>

到目前为止,我还没有想出一个可以做到这一点的算法。在我看来,我可能会想到这样的事情吗?

PASS 1
  Bucket 1:  Group with largest data, 60 users.
  Bucket 2:  Next largest data group, 37 users.
  Bucket 3:  Next largest data group, 72 users.
  Bucket 4:  etc....

PASS 2
  Bucket 1:  Add a group with small amount of data, but more users than average.
  # There's probably a ratio I can calculate to figure this out...divide users/datavmaybe?
  Bucket 2:  Find a "small data" group where sum of users in Bucket 1 ~= sum of users in Bucket 2
  # But then there's no guarantee that the data usages will be close enough
  Bucket 3:  etc...

PASS 3
  Bucket 1:  Now what?  Back to next largest data group?  

我仍然认为有更好的方法来解决这个问题,但它并没有找到我。如果有人有任何想法,我愿意接受建议。

马特

解决方案1.1 - 暴力更新

嗯......这是第一次尝试的更新。这仍然不是一个“背包问题”的解决方案。只是粗暴地强制数据,以便帐户在存储桶之间保持平衡。这次我添加了一些逻辑,这样如果一个存储桶具有更高的完整百分比的帐户与数据......它将找到最适合基于帐户数量的最大组(按数据)。与第一次尝试相比,我现在获得了更好的数据分发(如果您想查看第一次尝试,请参阅编辑历史记录)。

现在我按顺序加载每个桶,填充桶1,然后桶2等...我想如果我要修改代码以便我同时填充它们(或者差不多这样)我会更好数据平衡。

e.g。第1个部门进入水桶1,第2个部门进入水桶2等......直到所有水桶都有一个部门......然后再用水桶1重新开始。

dept_arr_sorted_by_acct =  dept_hsh.sort_by {|key, value| value[0]}
ap "MAX ACCTS: #{max_accts}    AVG ACCTS: #{avg_accts}"
ap "MAX SIZE:  #{max_size}     AVG SIZE:  #{avg_data}"

# puts dept_arr_sorted_by_acct
# exit


bucket_arr = Array.new
used_hsh = Hash.new

server_names.each do |s|
  bucket_hsh = Hash.new
  this_accts=0
  this_data=0
  my_key=""
  my_val=[]
  accts=0
  data=0
  accts_space_pct_used = 0
  data_space_pct_used = 0
  while this_accts < avg_accts

    if accts_space_pct_used <= data_space_pct_used
    # This loop runs if the % used of accts is less than % used of data
      dept_arr_sorted_by_acct.each do |val|
        # Sorted by num accts - ascending.  Loop until we find the last entry in the array that has <= accts than what we need
        next if used_hsh.has_key?(val[0])
          #do nothing
        if val[1][0] <= avg_accts-this_accts
          my_key = val[0]
          my_val = val[1]
          accts = val[1][0]
          data = val[1][1]
        end
      end
    else
    # This loop runs if the % used of data is less than % used of accts
      dept_arr_sorted_by_data = dept_arr_sorted_by_acct.sort { |a,b| b[1][1] <=> a[1][1] }
      dept_arr_sorted_by_data.each do |val|
        # Sorted by size - descending.  Find the first (largest data) entry where accts <= what we need
        next if used_hsh.has_key?(val[0])
          # do nothing
        if val[1][0] <= avg_accts-this_accts
          my_key = val[0]
          my_val = val[1]
          accts = val[1][0]
          data = val[1][1]
          break
        end
      end
    end

    used_hsh[my_key] = my_val
    bucket_hsh[my_key] = my_val
    this_accts = this_accts + accts
    this_data = this_data + data
    accts_space_pct_used = this_accts.to_f / avg_accts * 100
    data_space_pct_used = this_data.to_f / avg_data * 100
  end
  bucket_arr << [this_accts, this_data, bucket_hsh]
end

x=0
while x < bucket_arr.size do
  th = bucket_arr[x][2]
  list_of_depts = []
  th.each_key do |key|
    list_of_depts << key
  end
  ap "Bucket #{x}:  #{bucket_arr[x][0]} accounts :: #{bucket_arr[x][1]} data :: #{list_of_depts.size} departments"
  #ap list_of_depts
  x = x+1
end

......结果......

"MAX ACCTS: 2279    AVG ACCTS: 379"
"MAX SIZE:  1693315     AVG SIZE:  282219"
"Bucket 0:  379 accounts :: 251670 data :: 7 departments"
"Bucket 1:  379 accounts :: 286747 data :: 10 departments"
"Bucket 2:  379 accounts :: 278226 data :: 14 departments"
"Bucket 3:  379 accounts :: 281292 data :: 19 departments"
"Bucket 4:  379 accounts :: 293777 data :: 28 departments"
"Bucket 5:  379 accounts :: 298675 data :: 78 departments"

(379 * 6 2279)我仍然需要弄清楚如何解释MAX_ACCTS何时不能被桶的数量整除。我尝试在AVG_ACCTS值中添加一个1%的填充,在这种情况下意味着我认为平均值为383,但是所有的桶都说他们有383个帐户...这不可能是真的因为那时候有存储桶中的帐户数多于MAX_ACCTS。我在代码中遇到了一个我还没有找到的错误。

1 个答案:

答案 0 :(得分:2)

这是knapsack problem的一个例子。有一些解决方案,但这是一个非常棘手的问题,研究一个好的解决方案比尝试制作自己的解决方案更好。