我正在尝试使用Pandas和groupby来计算两列的比率。在下面的示例中,我要计算每个部门的员工状态的比例(部门中的状态数量/每个部门中的员工总数)。例如,销售部门共有3名员工,而拥有员工状态的员工人数为2,则该比例为2/3,即66.67%。我设法破解了它,但是必须有一种更优雅,更简单的方法来做到这一点。如何在下面更有效地获得所需的输出?
原始数据框架:
Department Name Status
0 Sales John Employee
1 Sales Steve Employee
2 Sales Sara Contractor
3 Finance Allen Contractor
4 Marketing Robert Employee
5 Marketing Lacy Contractor
代码:
mydict ={
'Name': ['John', 'Steve', 'Sara', 'Allen', 'Robert', 'Lacy'],
'Department': ['Sales', 'Sales', 'Sales', 'Finance', 'Marketing', 'Marketing'],
'Status': ['Employee', 'Employee', 'Contractor', 'Contractor', 'Employee', 'Contractor']
}
df = pd.DataFrame(mydict)
# Create column with total number of staff Status per Department
df['total_dept'] = df.groupby(['Department'])['Name'].transform('count')
print(df)
print('\n')
# Crate column with Status ratio per department
for k, v, in df.iterrows():
df.loc[k, 'Status_Ratio'] = (df.groupby(['Department', 'Status']).count().xs(v['Status'], level=1)['total_dept'][v['Department']]/v['total_dept']) *100
print(df)
print('\n')
# Final Groupby with Status Ratio. Size NOT needed
print(df.groupby(['Department', 'Status', 'Status_Ratio']).size())
所需的输出:
Department Status Status_Ratio
Finance Contractor 100.00
Marketing Contractor 50.00
Employee 50.00
Sales Contractor 33.33
Employee 66.67
答案 0 :(得分:1)
尝试(使用原始的df
):
df.groupby("Department")["Status"].value_counts(normalize=True).mul(100)
输出:
Department Status
Finance Contractor 100.000000
Marketing Contractor 50.000000
Employee 50.000000
Sales Employee 66.666667
Contractor 33.333333
Name: Status, dtype: float64