我有一个包含数百万个组的数据框。我正在尝试为每个组在每个组的顶部添加3个月的日期(月末日期)。因此,如果组的第一次观察是2019年12月,我想在该观察之前填充3行,其日期为2019年9月至2019年11月。我还想用相关的组ID填充组列,而其他列可以保留为空值。
如果可能的话,希望避免循环,因为这是一个非常大的数据集
这是我之前的DataFrame:
import pandas as pd
before = pd.DataFrame({'Group':[1,1,1,1,1,2,2,2,2,2],
'Date':['31/10/2018','30/11/2018','31/12/2018','31/01/2019','28/02/2019','30/03/2001','30/04/2001','31/05/2001','30/06/2001','31/07/2001'],
'value':[1.1,1.7,1.9,2.3,1.5,2.8,2,2,2,2]})
这是我的DataFrame之后
import pandas as pd
after = pd.DataFrame({'Group':[1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2],
'Date':['31/07/2018','31/08/2018','30/09/2018','31/10/2018','30/11/2018','31/12/2018','31/01/2019','28/02/2019','31/12/2000','31/01/2001','28/02/2001','30/03/2001','30/04/2001','31/05/2001','30/06/2001','31/07/2001'],
'value':[np.nan,np.nan,np.nan,1.1,1.7,1.9,2.3,1.5,np.nan,np.nan,np.nan,2.8,2,2,2,2]})
答案 0 :(得分:5)
因为如果多个组的解决方案不能很快地分开处理每个组,则想法是将Group
的第一行乘以DataFrame.drop_duplicates
,将月份排成offsets.MonthOffset
,合并在一起并添加所有缺少的项日期之间:
before['Date'] = pd.to_datetime(before['Date'], dayfirst=True)
df1 = before.drop_duplicates('Group')
#first and last shifted months - by 1 and by 3 months
df11 = df1[['Group','Date']].assign(Date = lambda x: x['Date'] - pd.offsets.MonthOffset(3))
df12 = df1[['Group','Date']].assign(Date = lambda x: x['Date'] - pd.offsets.MonthOffset(1))
df = (pd.concat([df11, df12], sort=False, ignore_index=True)
.set_index('Date')
.groupby('Group')
.resample('m')
.size()
.reset_index(name='value')
.assign(value = np.nan))
print (df)
Group Date value
0 1 2018-07-31 NaN
1 1 2018-08-31 NaN
2 1 2018-09-30 NaN
3 2 2000-12-31 NaN
4 2 2001-01-31 NaN
5 2 2001-02-28 NaN
最后添加到原始文件和排序中:
df = pd.concat([before, df], ignore_index=True).sort_values(['Group','Date'])
print (df)
Group Date value
10 1 2018-07-31 NaN
11 1 2018-08-31 NaN
12 1 2018-09-30 NaN
0 1 2018-10-31 1.1
1 1 2018-11-30 1.7
2 1 2018-12-31 1.9
3 1 2019-01-31 2.3
4 1 2019-02-28 1.5
13 2 2000-12-31 NaN
14 2 2001-01-31 NaN
15 2 2001-02-28 NaN
5 2 2001-03-30 2.8
6 2 2001-04-30 2.0
7 2 2001-05-31 2.0
8 2 2001-06-30 2.0
9 2 2001-07-31 2.0
如果只有新的几个月,则可以省略groupby
部分:
before['Date'] = pd.to_datetime(before['Date'], dayfirst=True)
df1 = before.drop_duplicates('Group')
df11 = df1[['Group','Date']].assign(Date = lambda x: x['Date'] - pd.offsets.MonthOffset(3))
df12 = df1[['Group','Date']].assign(Date = lambda x: x['Date'] - pd.offsets.MonthOffset(2))
df13 = df1[['Group','Date']].assign(Date = lambda x: x['Date'] - pd.offsets.MonthOffset(1))
df = (pd.concat([df11, df12, df13, before], ignore_index=True, sort=False)
.sort_values(['Group','Date']))
print (df)
Group Date value
0 1 2018-07-31 NaN
2 1 2018-08-31 NaN
4 1 2018-09-30 NaN
6 1 2018-10-31 1.1
7 1 2018-11-30 1.7
8 1 2018-12-31 1.9
9 1 2019-01-31 2.3
10 1 2019-02-28 1.5
1 2 2000-12-30 NaN
3 2 2001-01-30 NaN
5 2 2001-02-28 NaN
11 2 2001-03-30 2.8
12 2 2001-04-30 2.0
13 2 2001-05-31 2.0
14 2 2001-06-30 2.0
15 2 2001-07-31 2.0