import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Random;
public class BSTSearchTimer {
int [] n = {10000, 50000, 100000, 250000};
Random rand = new Random();
public static void main(String[] args) throws IOException{
BSTSearchTimer timer = new BSTSearchTimer();
timer.runBSTSearchTimer();
}
public void runBSTSearchTimer() throws IOException{
PrintWriter out = new PrintWriter( new FileWriter("tree2.csv"));
int reps = 10000; // the number of searches that we will do on the tree
for (int i = 0; i < n.length; i++){
BinarySearchTree<Long> longBST = new BinarySearchTree<Long>();
boolean success = true;
int numOfElements = n[i];
while (longBST.size() < numOfElements){
success = longBST.add(rand.nextLong());
while (!success){ // should keep attempting to add values until success is true
success = longBST.add(rand.nextLong());
}
}
long start = System.currentTimeMillis(); // start the timer for searching
for ( int j = 0; j < reps; j++){ // search rep times
longBST.find(rand.nextLong());
}
long end = System.currentTimeMillis(); // end timer for searching tree
double time = end-start;
System.out.printf("%d, %f\n", longBST.size(), time);
out.printf("%d, %f\n", n[i], time);
}
out.close();
}
}
当我运行这个程序时,它应该是4个不同大小的树:10000,50000,100000,250000。我知道搜索BST的速度效率应该是O(Log n)但我得到这些数:
当进行10,000次搜索时,我得到这些数字:(第一列是树的大小,第二列是进行搜索所花费的时间)
10000, 9.000000
50000, 3.000000
100000, 4.000000
进行100,000次搜索时:
10000, 41.000000
50000, 31.000000
100000, 40.000000
250000, 74.000000
任何提示都表示赞赏。
答案 0 :(得分:1)
你最有可能看到“失误”的影响。由于您只是在搜索随机数字,因此不在树中的数字将比数字长得多。
此外,二叉搜索树的效率是O(h),其中h是树的高度。 Red-Black trees和AVL trees保证它们的构造高度为O(log n),但随机构造的树很容易以高度接近O(n)结束。