我想将我的数据框按列之一分组,然后返回一个字典,该字典包含每个列值的所有行的列表。这样做有快速的熊猫习语吗?
示例:
test = pd.DataFrame({
'id': ['alice', 'bob', 'bob', 'charlie'],
'transaction_date': ['2020-01-01', '2020-01-01', '2020-01-02', '2020-01-02'],
'amount': [50.0, 10.0, 12.0, 13.0]
})
所需的输出:
result = {
'alice': [Series(transaction_date='2020-01-01', amount=50.0)],
'bob': [Series(transaction_date='2020-01-01', amount=10.0), Series(transaction_date='2020-01-02', amount=12.0)],
'charlie': [Series(transaction_date='2020-01-02', amount=53.0)],
}
以下方法不有效:
test.groupby('id').agg(list)
test.groupby('id').agg(list).to_dict():
{'amount': {'charlie': [13.0], 'bob': [10.0, 12.0], 'alice': [50.0]}, 'transaction_date': {'charlie': ['2020-01-02'], 'bob': ['2020-01-01', '2020-01-02'], 'alice': ['2020-01-01']}}
test.groupby('id').apply(list).to_dict():
{'charlie': ['amount', 'id', 'transaction_date'], 'bob': ['amount', 'id', 'transaction_date'], 'alice': ['amount', 'id', 'transaction_date']}
答案 0 :(得分:1)
使用itertuples
和zip
,
import pandas as pd
test = pd.DataFrame({
'id': ['alice', 'bob', 'bob', 'charlie'],
'transaction_date': ['2020-01-01', '2020-01-01', '2020-01-02', '2020-01-02'],
'amount': [50.0, 10.0, 12.0, 13.0]
})
columns = ['transaction_date', 'amount']
grouped = (test
.groupby('id')[columns]
.apply(lambda x: list(x.itertuples(name='Series', index=False))))
print(dict(zip(grouped.index, grouped.values)))
{
'alice': [Series(transaction_date='2020-01-01', amount=50.0)],
'bob': [
Series(transaction_date='2020-01-01', amount=10.0),
Series(transaction_date='2020-01-02', amount=12.0)
],
'charlie': [Series(transaction_date='2020-01-02', amount=13.0)]
}