我使用U-net已有一段时间了,请注意,在我的大多数应用程序中,它会围绕特定类产生过高估计。
例如,这是一个灰度图像:
以及3种类别的手动分割(病变[绿色],组织[品红色],背景[所有其他]):
我在预测中注意到的问题(边界上的高估):
使用的典型架构如下所示:
def get_unet(dim=128, dropout=0.5, n_classes=3):
inputs = Input((dim, dim, 1))
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = Dropout(dropout)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = Dropout(dropout)(conv5)
up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(n_classes, (1, 1), activation='relu', padding='same', ker nel_initializer='he_normal')(conv9)
conv10 = Reshape((dim * dim, n_classes))(conv10)
output = Activation('softmax')(conv10)
model = Model(inputs=[inputs], outputs=[output])
return model
加:
mgpu_model.compile(optimizer='adadelta', loss='categorical_crossentropy',
metrics=['accuracy'], sample_weight_mode='temporal')
open(p, 'w').write(json_string)
model_checkpoint = callbacks.ModelCheckpoint(f, save_best_only=True)
reduce_lr_cback = callbacks.ReduceLROnPlateau(
monitor='val_loss', factor=0.2,
patience=5, verbose=1,
min_lr=0.05 * 0.0001)
h = mgpu_model.fit(train_gray, train_masks,
batch_size=64, epochs=50,
verbose=1, shuffle=True, validation_split=0.2, sample_weight=sample_weights,
callbacks=[model_checkpoint, reduce_lr_cback])
我的问题: 您对如何更改体系结构或超参数以减轻过高估计有任何见解或建议吗?这甚至可能包括使用可能更擅长更精确细分的其他体系结构。 (请注意,我已经在进行班级平衡/加权以补偿班级频率的不平衡)
答案 0 :(得分:1)
您可以尝试使用各种损失函数代替交叉熵。对于多类别细分,您可以尝试:
臭小子2018的获胜者使用了自动编码器正则化(https://github.com/IAmSuyogJadhav/3d-mri-brain-tumor-segmentation-using-autoencoder-regularization)。您也可以尝试一下。该论文的想法是该模型还正在学习如何更好地编码潜在空间中的特征,从而以某种方式帮助模型进行分割。