我正在运行一个简单的神经网络接口。
model = tf.keras.models.Sequential([
#tf.keras.layers.Flatten(input_shape=(10, 1)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(2, activation='softmax')
])
具有给定的损失函数:
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
以张量[10,1]的形式进给,即表示值和标签。 当我拟合模型时,出现错误:
output_shape = [product,shape [-1]] IndexError:列表索引超出 范围
我正在使用tensorflow 2.0
这是输出错误:
If using Keras pass *_constraint arguments to layers.
Train on 200000 steps
Epoch 1/5
2020-02-02 12:48:13.088278: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
Traceback (most recent call last):
File "MLP.py", line 121, in <module>
model.fit(train, epochs=5)
File "/home/jacek/anaconda3/envs/alice_tf/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 727, in fit
use_multiprocessing=use_multiprocessing)
File "/home/jacek/anaconda3/envs/alice_tf/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_arrays.py", line 675, in fit
steps_name='steps_per_epoch')
File "/home/jacek/anaconda3/envs/alice_tf/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_arrays.py", line 300, in model_iteration
batch_outs = f(actual_inputs)
File "/home/jacek/anaconda3/envs/alice_tf/lib/python3.7/site-packages/tensorflow_core/python/keras/backend.py", line 3476, in __call__
run_metadata=self.run_metadata)
File "/home/jacek/anaconda3/envs/alice_tf/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1472, in __call__
run_metadata_ptr)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: Expected dimension in the range [0, 0), but got -1
[[{{node metrics/acc/ArgMax}}]]
[[loss/mul/_59]]
(1) Invalid argument: Expected dimension in the range [0, 0), but got -1
[[{{node metrics/acc/ArgMax}}]]
0 successful operations.
0 derived errors ignored.
答案 0 :(得分:0)
您可以提供model.fit
电话吗?这是一组工作代码。工作正常,这意味着它在使用Tensorflow 2.0或2.1时不会引发错误。
import numpy as np
import tensorflow as tf
model = tf.keras.models.Sequential([
#tf.keras.layers.Flatten(input_shape=(10, 1)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(2, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Generate fake data.
x = np.ones([10, 1], dtype=np.float32)
y = np.ones([10, 2], dtype=np.float32)
# Train the model, providing features and labels.
model.fit(x, y)
您收到的错误可能是因为您没有向y
提供model.fit
。