根据另一个变量在

时间:2020-01-31 18:55:39

标签: r

现在,我的数据集具有较宽的格式,这意味着我每人有一行,但是我想要一个长数据集,每人有多行。我有两个日期变量ADATE和DDATE,分别想用作我的起点和终点。例如,如果某人的ADATE是02/04/10,而DDATE是02/07/10,则我需要4行:

拥有:

ID ADATE     DDATE     
1  02/04/10  02/07/10 

想要:

ID ADATE     DDATE     NEW_DATE
1  02/04/10  02/07/10  02/04/10
1  02/04/10  02/07/10  02/05/10
1  02/04/10  02/07/10  02/06/10
1  02/04/10  02/07/10  02/07/10

我要为此执行多个数据集,并且我编写了适用于除单个数据集外的每个数据集的代码...我不确定为什么。这是我的尝试,也是我得到的错误:

jan15_long <- chf_jan15 %>%
  mutate(NEW_DATE = as.Date(ADATE)) %>%
  group_by(ID) %>%
  complete(NEW_DATE = seq.Date(as.Date(ADATE), as.Date(DDATE), by = "day")) %>%
  fill(vars) %>%
  ungroup()
Error in seq.Date(as.Date(ADATE), as.Date(DDATE), by = "day") : 
  'from' must be of length 1

上面的代码给了我我想要的,并且可以完美地运行于我拥有的所有其他数据集(11个中的10个)。

有更好的方法吗? dplyr对我来说最有意义,因此希望对此有解决方案。

1 个答案:

答案 0 :(得分:2)

如果有多于一行,则需要循环seq。我们可以使用map2。此外,根据“日期”列的formatas.Date需要一个format参数,即as.Date(ADATE, "%m/%d/%y")(假设它是月/日/年格式)

library(dplyr)
library(purrr)
library(lubridate)
chf_jan15 %>%
    mutate_at(vars(ends_with("DATE")), mdy) %>%
    mutate(random_date = map2(ADATE, DDATE, seq, by = "day")) %>%
    unnest(c(random_date))
# A tibble: 4 x 4
#     ID ADATE      DDATE      random_date
#  <int> <date>     <date>     <date>     
#1     1 2010-02-04 2010-02-07 2010-02-04 
#2     1 2010-02-04 2010-02-07 2010-02-05 
#3     1 2010-02-04 2010-02-07 2010-02-06 
#4     1 2010-02-04 2010-02-07 2010-02-07 

如果只有一行,则转换为Date类后,complete应该可以工作

library(tidyr)
chf_jan15 %>%
   mutate_at(vars(ends_with("DATE")), as.Date, format = "%m/%d/%y") %>%
   mutate(NEW_DATE = ADATE) %>%      
   complete(NEW_DATE = seq(ADATE, DDATE, by = 'day')) %>%
   fill(c(ID, ADATE, DDATE))
# A tibble: 4 x 4
#  NEW_DATE      ID ADATE      DDATE     
#  <date>     <int> <date>     <date>    
#1 2010-02-04     1 2010-02-04 2010-02-07
#2 2010-02-05     1 2010-02-04 2010-02-07
#3 2010-02-06     1 2010-02-04 2010-02-07
#4 2010-02-07     1 2010-02-04 2010-02-07

如果每个“ ID”都有一行,那么我们可以group_split并使用complete

chf_jan15 %>%
    mutate_at(vars(ends_with("DATE")), as.Date, format = "%m/%d/%y") %>%
    mutate(NEW_DATE = ADATE) %>%
    group_split(ID) %>%
    map_dfr(~ .x %>%
                 complete(NEW_DATE = seq(ADATE, DDATE, by = 'day')) %>%
                  fill(c(ID, ADATE, DDATE)))

数据

chf_jan15 <- structure(list(ID = 1L, ADATE = "02/04/10", 
    DDATE = "02/07/10"), class = "data.frame", row.names = c(NA, 
-1L))