我正在为服务器编写一个监听器线程,目前我正在使用:
while (true){
try {
if (condition){
//do something
condition=false;
}
sleep(1000);
} catch (InterruptedException ex){
Logger.getLogger(server.class.getName()).log(Level.SEVERE, null, ex);
}
}
使用上面的代码,我遇到了运行函数吃掉所有cpu时间循环的问题。睡眠功能有效,但它似乎是一个临时修复,而不是解决方案。
是否有某些函数会阻塞,直到变量'condition'变为'true'为止? 或者是不断循环标准的等待方法,直到变量的值发生变化?
答案 0 :(得分:54)
这样的轮询绝对是最不受欢迎的解决方案。
我假设您有另一个线程可以使条件成立。有几种方法可以同步线程。在您的情况下最简单的是通过对象的通知:
主线程:
synchronized(syncObject) {
try {
// Calling wait() will block this thread until another thread
// calls notify() on the object.
syncObject.wait();
} catch (InterruptedException e) {
// Happens if someone interrupts your thread.
}
}
其他主题:
// Do something
// If the condition is true, do the following:
synchronized(syncObject) {
syncObject.notify();
}
syncObject
本身可以是一个简单的Object
。
还有许多其他的线程间通信方式,但使用哪种方式取决于你正在做什么。
答案 1 :(得分:39)
EboMike's answer和Toby's answer都在正确的轨道上,但它们都包含致命的缺陷。该漏洞被称为丢失通知。
问题是,如果一个线程调用foo.notify()
,它将不会做任何事情,除非某个其他线程已经在foo.wait()
调用中休眠。对象foo
不记得已通知。
除非线程在foo上同步,否则您无法调用foo.wait()
或foo.notify()
。这是因为避免丢失通知的唯一方法是使用互斥锁保护条件。如果做得好,它看起来像这样:
消费者主题:
try {
synchronized(foo) {
while(! conditionIsTrue()) {
foo.wait();
}
doSomethingThatRequiresConditionToBeTrue();
}
} catch (InterruptedException e) {
handleInterruption();
}
制作人主题:
synchronized(foo) {
doSomethingThatMakesConditionTrue();
foo.notify();
}
更改条件的代码和检查条件的代码全部在同一对象上同步,并且消费者线程在等待之前显式测试条件。当条件已经为真时,消费者无法错过通知并最终在wait()
调用中停留。
另请注意,wait()
处于循环中。这是因为,在一般情况下,当消费者重新获得foo
锁定并唤醒时,某些其他线程可能会再次使该条件成为错误。即使 程序中无法实现这一点,但在某些操作系统中,即使未调用foo.wait()
,foo.notify()
也可能返回。这被称为虚假唤醒,并且允许它发生,因为它使等待/通知更容易在某些操作系统上实现。
答案 2 :(得分:18)
与EboMike的答案类似,您可以使用类似于wait / notify / notifyAll的机制,但已准备好使用Lock
。
例如,
public void doSomething() throws InterruptedException {
lock.lock();
try {
condition.await(); // releases lock and waits until doSomethingElse is called
} finally {
lock.unlock();
}
}
public void doSomethingElse() {
lock.lock();
try {
condition.signal();
} finally {
lock.unlock();
}
}
你要等待另一个线程通知的某些条件(在这种情况下调用doSomethingElse
),那时第一个线程将继续......
在内在同步上使用Lock
有很多优点,但我只是希望有一个显式的Condition
对象来表示条件(你可以拥有多个,这对于生产者这样的东西来说是个不错的选择 - 消费)。
另外,我不禁注意到你如何处理示例中的中断异常。您可能不应该像这样使用异常,而是使用Thread.currentThrad().interrupt
重置中断状态标志。
这是因为如果抛出异常,中断状态标志将被重置(它说“我不再记得被打断,我不能告诉其他人,如果他们要求我就是“)和另一个过程可能依赖于这个问题。例如,其他东西已经实施了基于此的中断策略...... phew。另一个例子可能是您是中断策略,而while(true)
可能已经实现为while(!Thread.currentThread().isInterrupted()
(这也会使您的代码更具社交性。)
因此,总而言之,当您想要使用Condition
时,使用Lock
等同于使用wait / notify / notifyAll,记录是邪恶的,吞咽InterruptedException
是淘气的;)
答案 3 :(得分:14)
由于没有人使用CountDownLatch发布解决方案。怎么样:
public class Lockeable {
private final CountDownLatch countDownLatch = new CountDownLatch(1);
public void doAfterEvent(){
countDownLatch.await();
doSomething();
}
public void reportDetonatingEvent(){
countDownLatch.countDown();
}
}
答案 4 :(得分:5)
您可以使用semaphore。
当条件不满足时,另一个线程获取信号量
您的主题会尝试使用acquireUninterruptibly()
来获取它
或tryAcquire(int permits, long timeout, TimeUnit unit)
并将被阻止。
当条件满足时,信号量也被释放,你的线程将获得它。
您也可以尝试使用SynchronousQueue
或CountDownLatch
。
答案 5 :(得分:4)
我有同样的问题,但我想要一个没有使用锁的解决方案。
问题:我最多只有一个线程从队列消耗。多个生产者线程不断插入队列,需要通知消费者是否在等待。该队列是无锁的,因此使用锁通知会导致生产者线程中出现不必要的阻塞。每个生产者线程需要先获取锁,然后才能通知等待的消费者。我相信我使用LockSupport
和AtomicReferenceFieldUpdater
想出了一个无锁解决方案。如果JDK中存在无锁屏障,我无法找到它。 CyclicBarrier
和CoundDownLatch
都在我内部使用锁定。
这是我稍微缩写的代码。需要明确的是,此代码只允许 一个 线程一次等待。可以通过使用某种类型的原子集合来存储多个所有者(ConcurrentMap
可能有效)来修改它以允许多个等待者/消费者。
我使用过这段代码,似乎有效。我没有广泛测试过它。我建议您在使用前阅读LockSupport
的文档。
/* I release this code into the public domain.
* http://unlicense.org/UNLICENSE
*/
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
import java.util.concurrent.locks.LockSupport;
/**
* A simple barrier for awaiting a signal.
* Only one thread at a time may await the signal.
*/
public class SignalBarrier {
/**
* The Thread that is currently awaiting the signal.
* !!! Don't call this directly !!!
*/
@SuppressWarnings("unused")
private volatile Thread _owner;
/** Used to update the owner atomically */
private static final AtomicReferenceFieldUpdater<SignalBarrier, Thread> ownerAccess =
AtomicReferenceFieldUpdater.newUpdater(SignalBarrier.class, Thread.class, "_owner");
/** Create a new SignalBarrier without an owner. */
public SignalBarrier() {
_owner = null;
}
/**
* Signal the owner that the barrier is ready.
* This has no effect if the SignalBarrer is unowned.
*/
public void signal() {
// Remove the current owner of this barrier.
Thread t = ownerAccess.getAndSet(this, null);
// If the owner wasn't null, unpark it.
if (t != null) {
LockSupport.unpark(t);
}
}
/**
* Claim the SignalBarrier and block until signaled.
*
* @throws IllegalStateException If the SignalBarrier already has an owner.
* @throws InterruptedException If the thread is interrupted while waiting.
*/
public void await() throws InterruptedException {
// Get the thread that would like to await the signal.
Thread t = Thread.currentThread();
// If a thread is attempting to await, the current owner should be null.
if (!ownerAccess.compareAndSet(this, null, t)) {
throw new IllegalStateException("A second thread tried to acquire a signal barrier that is already owned.");
}
// The current thread has taken ownership of this barrier.
// Park the current thread until the signal. Record this
// signal barrier as the 'blocker'.
LockSupport.park(this);
// If a thread has called #signal() the owner should already be null.
// However the documentation for LockSupport.unpark makes it clear that
// threads can wake up for absolutely no reason. Do a compare and set
// to make sure we don't wipe out a new owner, keeping in mind that only
// thread should be awaiting at any given moment!
ownerAccess.compareAndSet(this, t, null);
// Check to see if we've been unparked because of a thread interrupt.
if (t.isInterrupted())
throw new InterruptedException();
}
/**
* Claim the SignalBarrier and block until signaled or the timeout expires.
*
* @throws IllegalStateException If the SignalBarrier already has an owner.
* @throws InterruptedException If the thread is interrupted while waiting.
*
* @param timeout The timeout duration in nanoseconds.
* @return The timeout minus the number of nanoseconds that passed while waiting.
*/
public long awaitNanos(long timeout) throws InterruptedException {
if (timeout <= 0)
return 0;
// Get the thread that would like to await the signal.
Thread t = Thread.currentThread();
// If a thread is attempting to await, the current owner should be null.
if (!ownerAccess.compareAndSet(this, null, t)) {
throw new IllegalStateException("A second thread tried to acquire a signal barrier is already owned.");
}
// The current thread owns this barrier.
// Park the current thread until the signal. Record this
// signal barrier as the 'blocker'.
// Time the park.
long start = System.nanoTime();
LockSupport.parkNanos(this, timeout);
ownerAccess.compareAndSet(this, t, null);
long stop = System.nanoTime();
// Check to see if we've been unparked because of a thread interrupt.
if (t.isInterrupted())
throw new InterruptedException();
// Return the number of nanoseconds left in the timeout after what we
// just waited.
return Math.max(timeout - stop + start, 0L);
}
}
为了给出一个模糊的使用示例,我将采用james large的例子:
SignalBarrier barrier = new SignalBarrier();
消费者线程(单数,不是复数!):
try {
while(!conditionIsTrue()) {
barrier.await();
}
doSomethingThatRequiresConditionToBeTrue();
} catch (InterruptedException e) {
handleInterruption();
}
生产者线程:
doSomethingThatMakesConditionTrue();
barrier.signal();