如何使用子类tf.keras.losses.Los的自定义损失加载模型?
我通过将tf.keras.losses.Loss子类化来定义ContrastiveLoss,如下所示:
import tensorflow as tf
from tensorflow.keras.losses import Loss
class ContrastiveLoss(Loss):
def __init__(self, alpha, square=True, **kwargs):
super(ContrastiveLoss, self).__init__(**kwargs)
self.alpha = alpha
self.square = square
def get_dists(self, x, y, square):
dists = tf.subtract(x, y)
dists = tf.reduce_sum(tf.square(dists), axis=-1)
if not square:
zero_mask = tf.cast(tf.equal(dists, 0.0), tf.float32)
dists = dists + zero_mask * 1e-16
dists = tf.sqrt(dists)
nonzero_mask = 1.0 - zero_mask
dists = dists * nonzero_mask
return dists
def call(self, y_true, y_pred):
# y_true & y_pred shape == (N, #embed), for N mini-batch
# y_true[:, 0] == (N)
if len(y_true.shape) == 2: y_true= y_true[:, 0]
positive_mask = tf.cast(tf.equal( tf.expand_dims(y_true, 0), tf.expand_dims(y_true, 1) ), tf.float32)
negative_mask = tf.subtract(1.0, positive_mask)
all_dists = self.get_dists(tf.expand_dims(y_pred, 1), tf.expand_dims(y_pred, 0), self.square)
positive_loss = tf.multiply( positive_mask, all_dists )
negative_loss = tf.multiply( negative_mask, tf.maximum(tf.subtract(self.alpha, all_dists), 0.) )
contrastive_loss = tf.add( positive_loss, negative_loss )
valid_doublet_mask = tf.cast( tf.greater(contrastive_loss, 1e-16), tf.float32)
num_valid_doublet = tf.reduce_sum(valid_doublet_mask)
contrastive_loss = tf.reduce_sum( contrastive_loss ) / (num_valid_doublet + 1e-16)
return contrastive_loss
def get_config(self):
config = super(ContrastiveLoss, self).get_config()
config.update({'alpha' : self.alpha,
'square' : self.square})
return config
我可以用它训练和保存模型。
但是,当我按如下方式加载模型时,会收到错误消息。
load_model(model_path, custom_objects={'ContrastiveLoss' : ContrastiveLoss})
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-af42cd2404e1> in <module>()
----> 1 load_model(model_path, custom_objects={'ContrastiveLoss' : ContrastiveLoss})
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/saving/save.py in load_model(filepath, custom_objects, compile)
148 if isinstance(filepath, six.string_types):
149 loader_impl.parse_saved_model(filepath)
--> 150 return saved_model_load.load(filepath, compile)
151
152 raise IOError(
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/saving/saved_model/load.py in load(path, compile)
97 if training_config is not None:
98 model.compile(**saving_utils.compile_args_from_training_config(
---> 99 training_config))
100 # pylint: disable=protected-access
101
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/saving/saving_utils.py in compile_args_from_training_config(training_config, custom_objects)
232 loss_config = training_config['loss'] # Deserialize loss class.
233 if isinstance(loss_config, dict) and 'class_name' in loss_config:
--> 234 loss_config = losses.get(loss_config)
235 loss = nest.map_structure(
236 lambda obj: custom_objects.get(obj, obj), loss_config)
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/losses.py in get(identifier)
1184 return deserialize(identifier)
1185 if isinstance(identifier, dict):
-> 1186 return deserialize(identifier)
1187 elif callable(identifier):
1188 return identifier
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/losses.py in deserialize(name, custom_objects)
1173 module_objects=globals(),
1174 custom_objects=custom_objects,
-> 1175 printable_module_name='loss function')
1176
1177
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
290 config = identifier
291 (cls, cls_config) = class_and_config_for_serialized_keras_object(
--> 292 config, module_objects, custom_objects, printable_module_name)
293
294 if hasattr(cls, 'from_config'):
/tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/utils/generic_utils.py in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
248 cls = module_objects.get(class_name)
249 if cls is None:
--> 250 raise ValueError('Unknown ' + printable_module_name + ': ' + class_name)
251
252 cls_config = config['config']
ValueError: Unknown loss function: ContrastiveLoss
奇怪的是,如果我使用自定义损失“函数”,则在load_model(。)期间没有错误
但是在这种情况下,使用Loss的“子类”会发生错误。
答案 0 :(得分:3)
如果javad建议
您是否尝试过使用对象而不是类名,这意味着
0 : match '0' (?= : begin a positive lookahead .{0,2} : match 0-2 characters (?:$|1) : match the end of the string or '1' ) : end positive lookahead
,其中var a = [6, 1, 5, 9]; function find() { let x = 5; for (var i = 0; i < a.length; i++) { document.getElementById("out").innerHTML += a[i]; if (x == a[i]) { for (var f = i; f < a.length; f++) { b.push(a[f]) alert[f] var index = a.indexOf(a[i]) a.splice(index) } } } } find(a);
具有损失的所有参数,例如load_model(model_path, custom_objects={'ContrastiveLoss' : ContrastiveLoss(...)})
,...?
不起作用,您只想进行推断,然后尝试使用:
...
希望有帮助。