当我在以下循环中使用它时,我已经训练了Keras模型:
n = int(60) # use n numbers to predict (n+1)th
m = 150 #predict horizon
data = Test
data = scaler.fit_transform(data)
x = []
for i in range(n,m):
x = []
x.append(data[i-n:i])
x = np.array(x)
x = np.reshape(x,(x.shape[0] , x.shape[1],1))
y = model.predict(x)
data= np.concatenate((data ,y))
data = np.delete(data,0,0)
data = np.asarray(data,dtype=object)
predicted = scaler.inverse_transform(data)
它仅从开始返回我的数据集的值,如图所示。
您认为问题是什么?
Result of prediction