我有两个数据帧:df1和df2。我想将df2中的列的值添加到df1中。
df1:
Title = ['Aeroplane', 'Ships', 'Houses']
Term = ['Computers', 'Flasks', 'Mouse']
counts_1 = [200, 30, 45, 66, 33, 450, 60, 100, 150]
df_1 = pd.DataFrame({"Title": Title, "Terms": Term})
product_terms = product(term_list, cap_list)
df_1 = pd.DataFrame(product_terms, columns=['Term', 'Title'])
df_1['C1'] = counts_1
Term Title C1
0 Computers Aeroplane 200
1 Computers Ships 30
2 Computers Houses 45
3 Flasks Aeroplane 66
4 Flasks Ships 33
5 Flasks Houses 450
6 Mouse Aeroplane 60
7 Mouse Ships 100
8 Mouse Houses 150
df2(较小的一个)
terms = ['Computers', 'Flasks', 'Flasks', 'Mouse']
title = ['Aeroplane', 'Aeroplane', 'Ships', 'Houses']
count_2 = [3, 6, 13, 15]
df_2 = pd.DataFrame({'Term': terms, 'Title': title, 'C2': count_2})
Term Title C2
0 Computers Aeroplane 3
1 Flasks Aeroplane 6
2 Flasks Ships 13
3 Mouse Houses 15
我想将两个df合并为一个df,如下所示:将df_2的列C2添加到df_1(基于Term和Title col),在没有对应的Term和Title cols的地方插入0。 / p>
Term Title C1 C2
0 Computers Aeroplane 200 3
1 Computers Ships 30 0
2 Computers Houses 45 0
3 Flasks Aeroplane 66 6
4 Flasks Ships 33 13
5 Flasks Houses 450 0
6 Mouse Aeroplane 60 0
7 Mouse Ships 100 15
8 Mouse Houses 150 0
df2的术语和标题始终是df1中术语和标题的子集。
这是我尝试过的:
df_1.set_index(['Term', 'Title'], inplace=True)
df_2.set_index(['Term', 'Title'], inplace=True)
然后,遍历行并分配值。
for idx, row in df_1.iterrows():
try:
c2_value = df_2.loc[idx, 'C2']
except:
df_1.loc[idx, 'C2'] = 0
else:
df_1.loc[idx]['C2'] = c2_value
df_final = df_1.reset_index()
是否有更好的方法来实现我想要的?我觉得iterrows
可能不是一种有效的方法。我的数据框有数百万行。