如何在Tensorflow中将模型分为2个子模型

时间:2020-01-15 10:39:05

标签: python tensorflow

我在Tensorflow上有一个Cifar-10模型。培训代码为here。 模型构建功能在这里:

def conv_net(x, keep_prob):

    conv1_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 3, 64], mean=0, stddev=0.08))
    conv2_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 128], mean=0, stddev=0.08))
    conv3_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 128, 256], mean=0, stddev=0.08))
    conv4_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 256, 512], mean=0, stddev=0.08))

    # 1, 2
    conv1 = tf.nn.conv2d(x, conv1_filter, strides=[1,1,1,1], padding='SAME')
    conv1 = tf.nn.relu(conv1)
    conv1_pool = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    conv1_bn = tf.layers.batch_normalization(conv1_pool)

    # 3, 4
    conv2 = tf.nn.conv2d(conv1_bn, conv2_filter, strides=[1,1,1,1], padding='SAME')
    conv2 = tf.nn.relu(conv2)
    conv2_pool = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')    
    conv2_bn = tf.layers.batch_normalization(conv2_pool)

    # 5, 6
    conv3 = tf.nn.conv2d(conv2_bn, conv3_filter, strides=[1,1,1,1], padding='SAME')
    conv3 = tf.nn.relu(conv3)
    conv3_pool = tf.nn.max_pool(conv3, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')  
    conv3_bn = tf.layers.batch_normalization(conv3_pool)

    # 7, 8
    conv4 = tf.nn.conv2d(conv3_bn, conv4_filter, strides=[1,1,1,1], padding='SAME')
    conv4 = tf.nn.relu(conv4)
    conv4_pool = tf.nn.max_pool(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    conv4_bn = tf.layers.batch_normalization(conv4_pool)

    # 9
    flat = tf.contrib.layers.flatten(conv4_bn)  

    # 10
    full1 = tf.contrib.layers.fully_connected(inputs=flat, num_outputs=128, 
    activation_fn=tf.nn.relu)
    full1 = tf.nn.dropout(full1, keep_prob)
    full1 = tf.layers.batch_normalization(full1)

    # 11
    full2 = tf.contrib.layers.fully_connected(inputs=full1, num_outputs=256, activation_fn=tf.nn.relu)
    full2 = tf.nn.dropout(full2, keep_prob)
    full2 = tf.layers.batch_normalization(full2)

    # 12
    full3 = tf.contrib.layers.fully_connected(inputs=full2, num_outputs=512, activation_fn=tf.nn.relu)
    full3 = tf.nn.dropout(full3, keep_prob)
    full3 = tf.layers.batch_normalization(full3)    

    # 13
    full4 = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=1024, activation_fn=tf.nn.relu)
    full4 = tf.nn.dropout(full4, keep_prob)
    full4 = tf.layers.batch_normalization(full4)        

    # 14
    out = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=10, activation_fn=None)
    return out

我想做什么?

我想将模型从名为full4的图层拆分为2个子模型。我的目标是采用1024长度的数组,进行一些操作,然后给新的1024长度的数组建模并进行预测。但是我不知道如何在Tensorflow中做到这一点。

0 个答案:

没有答案