我有一个像[] R: merge unequal dataframes and replace missing rows with 0
这样的问题以下是此问题的数据:
df1 = data.frame(x=c('a', 'b', 'c', 'd', 'e'))
df2 = data.frame(x=c('a', 'b', 'c'),y = c(0,1,0))
df3 = data.frame(x=c('a', 'b', 'c', 'd'),y = c(1,1,1,0))
df4 = data.frame(x=c('b', 'a', 'e'),y = c(0,1,0))
zz <- merge(df1, df2, all = TRUE)
zz[is.na(zz)] <- 0
在这个例子中,我将df1与df2合并。现在我想创建一个循环来合并df3和df4以及更多数据帧与df1。问题是列表中的结果必须是cbind才能生成最终的数据帧。
任何人都可以帮助我吗?
谢谢!
EDIT! 这是我创建的循环。变量goterms禁止包含10个变量的列表。变量是interestGO中列表的名称。选择第一个感兴趣的GO,计算结果是变量结果。此结果必须与x合并。因为它是一个循环,所有10个结果必须是cbind才能创建最终的数据帧。
for (i in 1:length(goterms)){
goilmn<-as.data.frame(interestedGO[i])
resultILMN<-match(goilmn[,1], rownames(xx2),nomatch=0)
resultILMN[resultILMN] <- 1
result<-cbind(goilmn,resultILMN)
colnames(result) <- c('x','result')
zz<-merge(x, result, all=TRUE)
resultloop<-zz[is.na(zz)]<-0
standard[i]<-cbind(resultloop)
}
goterms:
[1] "GO:0009611" "GO:0007596" "GO:0050817" "GO:0061082" "GO:0007599"
[6] "GO:0050776" "GO:0006910" "GO:0034383" "GO:0019932" "GO:0002720"
interestedGO:
$`GO:0009611`
[1] "ILMN_1651346" "ILMN_1651354" "ILMN_1651599" "ILMN_1651950" "ILMN_1652287"
[6] "ILMN_1652445" "ILMN_1652693" "ILMN_1652825" "ILMN_1653324" "ILMN_1653395"
$`GO:0007596`
[1] "ILMN_1651599" "ILMN_1652693" "ILMN_1652825" "ILMN_1653324" "ILMN_1655595"
[6] "ILMN_1656057" "ILMN_1659077" "ILMN_1659923" "ILMN_1659947" "ILMN_1662619"
[11] "ILMN_1664565" "ILMN_1665132" "ILMN_1665859" "ILMN_1666175" "ILMN_1668052"
[16] "ILMN_1670229" "ILMN_1670305" "ILMN_1670490" "ILMN_1670708"
"ILMN_1671766"
$`GO:0050817`
[1] "ILMN_1651599" "ILMN_1652693" "ILMN_1652825" "ILMN_1653324" "ILMN_1655595"
[6] "ILMN_1656057" "ILMN_1659077" "ILMN_1659923" "ILMN_1659947" "ILMN_1662619"
[11] "ILMN_1664565" "ILMN_1665132" "ILMN_1665859" "ILMN_1666175" "ILMN_1668052"
[16] "ILMN_1670229" "ILMN_1670305" "ILMN_1670490" "ILMN_1670708" "ILMN_1671766"
[21] "ILMN_1671928" "ILMN_1675083" "ILMN_1678049" "ILMN_1678728"
"ILMN_1680805"
$`GO:0061082`
[1] "ILMN_1661695" "ILMN_1665132" "ILMN_1716446" "ILMN_1737314" "ILMN_1772387"
[6] "ILMN_1784863" "ILMN_1796094" "ILMN_1800317" "ILMN_1800512" "ILMN_1807074"
x是所有ILMN代码的引用。这是x变量的头部。 X [1:100,]
[1] ILMN_1343291 ILMN_1343295 ILMN_1651228 ILMN_1651229 ILMN_1651238
[6] ILMN_1651254 ILMN_1651259 ILMN_1651260 ILMN_1651262 ILMN_1651278
[11] ILMN_1651282 ILMN_1651285 ILMN_1651286 ILMN_1651303 ILMN_1651310
[16] ILMN_1651315 ILMN_1651330 ILMN_1651336 ILMN_1651343 ILMN_1651346
[21] ILMN_1651347 ILMN_1651354 ILMN_1651358 ILMN_1651370 ILMN_1651373
[26] ILMN_1651385 ILMN_1651396 ILMN_1651415 ILMN_1651428 ILMN_1651430
[31] ILMN_1651433 ILMN_1651437 ILMN_1651438 ILMN_1651456 ILMN_1651457
答案 0 :(得分:3)
我不确定我是否理解你想要的东西,但是这样吗?
> zz <- Reduce(function(a,b)merge(a,b,all=TRUE, by="x"), list(df1, df2, df3, df4))
> zz[is.na(zz)] <- 0
> zz
x y.x y.y y
1 a 0 1 1
2 b 1 1 0
3 c 0 1 0
4 d 0 0 0
5 e 0 0 0
您可以使用Reduce避免循环,但请注意,它不一定会带来性能提升。
如果你想要单独的数据帧,那么Map(只是mapply的包装器)很有用:
> zz <- Map(function(b)merge(df1,b,all=TRUE, by="x"), list(df2, df3, df4))
> zz
[[1]]
x y
1 a 0
2 b 1
3 c 0
4 d NA
5 e NA
[[2]]
x y
1 a 1
2 b 1
3 c 1
4 d 0
5 e NA
[[3]]
x y
1 a 1
2 b 0
3 c NA
4 d NA
5 e 0
并通过do.call cbind他们
> zz <- do.call("cbind", zz)
> zz[is.na(zz)] <- 0
> zz
x y x y x y
1 a 0 a 1 a 1
2 b 1 b 1 b 0
3 c 0 c 1 c 0
4 d 0 d 0 d 0
5 e 0 e 0 e 0