我一直在寻找一种使用boxplot
中的facet_wrap
并排绘制R
的解决方案。尽管有很多好的解决方案,但是我没有遇到任何想要的东西。我决定画一张我想看到的两个plot
的{{1}}的图片。 data.frame
{strong> C 拥有我的校准数据,用于四种不同计量指标的模型(即KGE,NSE,PBIAS和R-Sq)。 } V 有我的 validation 数据。我想使用Data.frame
功能的Data.frame
来查看每个指标的单独plot
。下面是我到目前为止所做的事情,但并没有使我更加接近。
facet_wrap
答案 0 :(得分:2)
因此,这是一种您可以执行所需操作的方法;
首先,我们创建您拥有的数据;
library(tidyverse)
# Creating first dataframe
C <-
data.frame(
KGE_M1 = runif(3, 0, 0.5),
NSE_M1 = runif(3,0,0.5),
R_Sq_M1 = runif(3,-1,0.3),
PBIAS_M1 = runif(3, -0.25, 0.25),
KGE_M2 = runif(3, 0.2, 0.7),
NSE_M2 = runif(3,0.2,0.7),
R_Sq_M2 = runif(3,-0.5,0.7),
PBIAS_M2 = runif(3, -0.15, 0.15),
KGE_M3 = runif(3, 0.3, 0.8),
NSE_M3 = runif(3,0.3,0.8),
R_Sq_M3 = runif(3,0.3,0.8),
PBIAS_M3 = runif(3, -0.10, 0.10),
KGE_M4 = runif(3, 0.5, 1),
NSE_M4 = runif(3,0.5,1),
R_Sq_M4 = runif(3,0.5,1),
PBIAS_M4 = runif(3, -0.05, 0.05),
Cal = rep("Calibration", 3),
stringsAsFactors = FALSE)
# Creating second dataframe
V <-
data.frame(
KGE_M1 = runif(3, 0, 0.5),
NSE_M1 = runif(3,0,0.5),
R_Sq_M1 = runif(3,-1,0.3),
PBIAS_M1 = runif(3, -0.25, 0.25),
KGE_M2 = runif(3, 0.2, 0.7),
NSE_M2 = runif(3,0.2,0.7),
R_Sq_M2 = runif(3,-0.5,0.7),
PBIAS_M2 = runif(3, -0.15, 0.15),
KGE_M3 = runif(3, 0.3, 0.8),
NSE_M3 = runif(3,0.3,0.8),
R_Sq_M3 = runif(3,0.3,0.8),
PBIAS_M3 = runif(3, -0.10, 0.10),
KGE_M4 = runif(3, 0.5, 1),
NSE_M4 = runif(3,0.5,1),
R_Sq_M4 = runif(3,0.5,1),
PBIAS_M4 = runif(3, -0.05, 0.05),
Val = rep("Validation", 3),
stringsAsFactors = FALSE)
现在我们更改数据格式并对其进行可视化;
# Rename the variable to make it same
C <- rename(C, Identifier = Cal)
V <- rename(V, Identifier = Val)
data <-
# First we bind the two datasets
bind_rows(C, V) %>%
# We convert from wide format to long format
gather(key = "Variable", value = "Value", -Identifier) %>%
# We separate Variable into 2 columns at the last underscore
separate(Variable, into = c("Variable", "Number"), sep = "_(?=[^_]+$)")
data %>%
ggplot()+
geom_boxplot(aes(x = Number, y = Value,
group = interaction(Identifier, Number), fill = Identifier)) +
facet_wrap(~Variable)
答案 1 :(得分:1)
我认为您需要在绘制之前先对Variable
进行拆分,以使M1,M2,M3 M4具有一个变量,而您的条件具有一个变量:
library(tidyverse)
C2 <- C %>% pivot_longer(., -Cal, names_to = "Variable", values_to = "Value") %>%
group_by(Variable) %>%
mutate(Variable2 = unlist(strsplit(Variable, "_M"))[2]) %>%
mutate(Variable2 = paste0("Cal_M",Variable2)) %>%
mutate(Variable1 = unlist(strsplit(Variable,"_M"))[1]) %>%
rename(., Type = Cal)
# A tibble: 6 x 5
# Groups: Variable [6]
Type Variable Value Variable2 Variable1
<fct> <chr> <dbl> <chr> <chr>
1 Calibration KGE_M1 0.246 Cal_M1 KGE
2 Calibration NSE_M1 0.476 Cal_M1 NSE
3 Calibration R_Sq_M1 -0.978 Cal_M1 R_Sq
4 Calibration PBIAS_M1 0.117 Cal_M1 PBIAS
5 Calibration KGE_M2 0.544 Cal_M2 KGE
6 Calibration NSE_M2 0.270 Cal_M2 NSE
现在,我们对数据集V
V2 <- V %>% pivot_longer(., -Val, names_to = "Variable", values_to = "Value") %>%
group_by(Variable) %>%
mutate(Variable2 = unlist(strsplit(Variable, "_M"))[2]) %>%
mutate(Variable2 = paste0("Val_M",Variable2)) %>%
mutate(Variable1 = unlist(strsplit(Variable,"_M"))[1]) %>%
rename(., Type = Val)
# A tibble: 6 x 5
# Groups: Variable [6]
Type Variable Value Variable2 Variable1
<fct> <chr> <dbl> <chr> <chr>
1 Validation KGE_M1 0.459 Val_M1 KGE
2 Validation NSE_M1 0.105 Val_M1 NSE
3 Validation R_Sq_M1 -0.435 Val_M1 R_Sq
4 Validation PBIAS_M1 0.0281 Val_M1 PBIAS
5 Validation KGE_M2 0.625 Val_M2 KGE
6 Validation NSE_M2 0.332 Val_M2 NSE
我们现在可以将它们绑定在一起:
DF <- rbind(C2,V2)
然后,我们可以绘制:
ggplot(DF, aes(x = Variable2, y = Value))+
geom_boxplot()+
facet_wrap(.~Variable1, scales = "free")+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
编辑:重命名x轴,添加空列以分隔校准和验证值
要在“校准”和“验证”之间添加空白,您可以像下面这样简单地为Variable1的每个条件添加空白行:
DF <- as.data.frame(DF) %>% add_row(Type = rep("Empty",4),
Variable = rep("Empty",4),
Value = rep(NA,4),
Variable2 = rep("Empty",4),
Variable1 = unique(DF$Variable1))
此外,如果要重命名x轴标签,则可以使用scale_x_discrete
ggplot(DF, aes(x = Variable2, y = Value, fill = Type))+
geom_boxplot()+
facet_wrap(.~Variable1, scales = "free")+
theme(axis.text.x = element_text(angle = 45, hjust = 1))+
scale_x_discrete(labels = c("M1","M2","M3","M4","","M1","M2","M3","M4"))
看起来像您所期望的吗?