如何从熊猫的嵌套重复项中提取信息?

时间:2020-01-10 19:27:07

标签: pandas duplicates boolean-operations

我正在尝试从重复项中提取信息。

    data = np.array([[100,1,0, 'GB'],[100,0,1, 'IT'],[101,1,0, 'CN'],[101,0,1, 'CN'],
             [102,1,0, 'JP'],[102,0,1, 'CN'],[103,0,1, 'DE'],
             [103,0,1, 'DE'],[103,1,0, 'VN'],[103,1,0, 'VN']])
    df = pd.DataFrame(data, columns = ['wed_cert_id','spouse_1',
                               'spouse_2', 'nationality'])

enter image description here

我想将每场婚礼归为跨国婚礼。 在我的实际数据集中,婚姻中可能有超过2个配偶。

我的目标是获得像这样的数据帧: enter image description here

或类似这样:

enter image description here

我试图找到一种方法来使用.duplicated()过滤数据,并尝试使用not运算符拒绝.duplicated(),但是并没有成功解决:

    df = df.loc[df.wed_cert_id.duplicated(keep=False) ~df.nationality.duplicated(keep=False), :]
    df = df.loc[df.wed_cert_id.duplicated(keep=False) not df.nationality.duplicated(keep=False), :]

删除重复项会导致过多的观察结果。我的数据集允许每场婚礼有超过2个配偶,这有可能导致重复:

    df.drop_duplicates(subset=['wed_cert_id','nationality'], keep=False, inplace=True)

我该怎么做?

从现在开始非常感谢

1 个答案:

答案 0 :(得分:1)

我相信您需要:

df['cross_national'] = (df.groupby('wed_cert_id')['nationality']
                            .transform('nunique').gt(1).view('i1'))
print(df)

或者:

df['cross_national'] = (df.groupby('wed_cert_id')['nationality']
                       .transform('nunique').gt(1).view('i1')
                       .mul(df[['spouse_1','spouse_2']].prod(1)))
print(df)

  wed_cert_id spouse_1 spouse_2 nationality  cross_national
0         100        1        0          GB               1
1         100        0        1          IT               1
2         101        1        0          CN               0
3         101        0        1          CN               0
4         102        1        0          JP               1
5         102        0        1          CN               1
6         103        0        1          DE               1
7         103        0        1          DE               1
8         103        1        0          VN               1
9         103        1        0          VN               1