如何使用健身生成器加速CNN训练

时间:2020-01-03 13:44:13

标签: keras conv-neural-network

我有一个60000张图像的数据集,我将它们分成训练和验证集(80/20),并且我使用ImageDataGenerator从磁盘上以32个大小的批次获取图像。我正在处理多个具有6000个类别(标签)的标签分类任务。为了解决此问题,我使用Keras使用以下CNN:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_27 (Conv2D)           (None, 256, 256, 64)      1792      
_________________________________________________________________
max_pooling2d_27 (MaxPooling (None, 128, 128, 64)      0         
_________________________________________________________________
conv2d_28 (Conv2D)           (None, 128, 128, 128)     73856     
_________________________________________________________________
max_pooling2d_28 (MaxPooling (None, 64, 64, 128)       0         
_________________________________________________________________
conv2d_29 (Conv2D)           (None, 64, 64, 128)       147584    
_________________________________________________________________
max_pooling2d_29 (MaxPooling (None, 32, 32, 128)       0         
_________________________________________________________________
flatten_10 (Flatten)         (None, 131072)            0         
_________________________________________________________________
dense_20 (Dense)             (None, 512)               67109376  
_________________________________________________________________
dense_21 (Dense)             (None, 5216)              2675808   
=================================================================
Total params: 70,008,416
Trainable params: 70,008,416
Non-trainable params: 0
_________________________________________________________________

我正在使用fit_generator训练模型和steps_per_epoch = total_training_samples/batch_size。但是,它花费了太长时间(超过一周)来训练10个时代,这是一个非常简单的模型。我试图通过减少层和神经元的数量来使体系结构更加简单,但是训练时间也太多了,结果很糟糕。我知道最后一个决策层(具有5216个神经元)负责大量参数。我还能改变什么以使模型更易于训练?

0 个答案:

没有答案