环境: TF2.0 Python 3.5 ubuntu 16.04
问题: 我尝试使用预先训练的mobilenet_V2,但准确性不会增加:
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
该脚本是从tensorflow 2.0(https://www.tensorflow.org/tutorials/images/transfer_learning?hl=zh-cn)的教程中复制的
我所做的唯一更改是馈入网络的数据集。原始代码对猫和狗进行了二进制分类,一切正常。但是,使用诸如“ mnist”,“ tf_flowers”之类的多类数据集时,准确性永远不会提高。请注意,我使用了正确的损失函数和指标。
代码如下:
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import numpy as np
import tensorflow as tf
keras = tf.keras
import tensorflow_datasets as tfds
# tfds.disable_progress_bar()
SPLIT_WEIGHTS = (8, 1, 1)
splits = tfds.Split.TRAIN.subsplit(weighted=SPLIT_WEIGHTS)
(raw_train, raw_validation, raw_test), metadata = tfds.load(
'mnist', split=list(splits),
with_info=True, as_supervised=True)
get_label_name = metadata.features['label'].int2str
print(raw_train)
print(raw_validation)
print(raw_test)
IMG_SIZE = 160 # All images will be resized to 160x160
def format_example(image, label):
if image.shape[-1] == 1:
image = tf.concat([image, image, image], 2)
image = tf.cast(image, tf.float32)
image = (image/127.5) - 1
image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
return image, label
train = raw_train.map(format_example)
validation = raw_validation.map(format_example)
test = raw_test.map(format_example)
BATCH_SIZE = 32
SHUFFLE_BUFFER_SIZE = 1000
train_batches = train.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
validation_batches = validation.batch(BATCH_SIZE)
test_batches = test.batch(BATCH_SIZE)
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)
# Create the base model from the pre-trained model MobileNet V2
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
for image_batch, label_batch in train_batches.take(1):
pass
feature_batch = base_model(image_batch)
base_model.trainable = False
base_model.summary()
print("image batch size:", image_batch.shape)
print("feature batch size:", feature_batch.shape)
global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
feature_batch_average = global_average_layer(feature_batch)
# print(feature_batch_average.shape)
prediction_layer = keras.layers.Dense(10)
model = tf.keras.Sequential([
base_model,
global_average_layer,
prediction_layer
])
tf.keras.backend.set_learning_phase(True)
base_learning_rate = 0.01
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate),
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
num_train, num_val, num_test = (
metadata.splits['train'].num_examples*weight/10
for weight in SPLIT_WEIGHTS
)
initial_epochs = 10
steps_per_epoch = round(num_train)//BATCH_SIZE
validation_steps = 20
loss0,accuracy0 = model.evaluate(validation_batches, steps = validation_steps)
print("initial loss: {:.2f}".format(loss0))
print("initial accuracy: {:.2f}".format(accuracy0))
history = model.fit(train_batches,
epochs=initial_epochs,
validation_data=validation_batches)