任务1:
我有这样的桌子:
+----------+------------+----------+------------+----------+------------+-------+
| a_name_0 | id_qname_0 | a_name_1 | id_qname_1 | a_name_2 | id_qname_2 | count |
+----------+------------+----------+------------+----------+------------+-------+
| country | 1 | NAN | NAN | NAN | NAN | 100 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 2 | city | 8 | NAN | NAN | 20 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 2 | city | 9 | NAN | NAN | 80 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 3 | age | 4 | sex | 6 | 40 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 3 | age | 5 | sex | 7 | 60 |
+----------+------------+----------+------------+----------+------------+-------+
我需要依次旋转每一行,删除NAN,然后将其转换为大小可变的字典,例如,前两个字典将如下所示:
{'a_name_0':'country','id_qname_0':1}
{'a_name_0':'region','id_qname_0':2, 'a_name_1':'city','id_qname_1':8}
{'a_name_0':'region','id_qname_0':2, 'a_name_1':'city','id_qname_1':9}
此后的每个字典都应存储在列表中。
任务2。
使用下表,我必须计算上一步中dict的列外观:
+----------+------------+----------+------------+----------+
| id | country | city | age | sex |
+----------+------------+----------+------------+----------+
| 1 | 1 | NAN | NAN | NAN |
+----------+------------+----------+------------+----------+
| 2 | 1 | 8 | NAN | NAN |
+----------+------------+----------+------------+----------+
如果有一些更快的映射解决方案,请提出建议,因为我要做的可能会很混乱。 This的答案无济于事,因为我需要迭代器来提取参数并计算其外观。
答案 0 :(得分:3)
您可以删除count
列,并用orient='r'
(records
)通过DataFrame.to_dict
将所有行转换为字典列表,然后过滤出字典理解中缺少值的字典:
L = [{k:v for k, v in x.items() if pd.notna(v)} for x in df.drop('count', 1).to_dict('r')]
print (L)
[{'a_name_0': 'country', 'id_qname_0': 1},
{'a_name_0': 'region', 'id_qname_0': 2, 'a_name_1': 'city', 'id_qname_1': 8.0},
{'a_name_0': 'region', 'id_qname_0': 2, 'a_name_1': 'city', 'id_qname_1': 9.0},
{'a_name_0': 'region', 'id_qname_0': 3, 'a_name_1': 'age',
'id_qname_1': 4.0, 'a_name_2': 'sex', 'id_qname_2': 6.0},
{'a_name_0': 'region', 'id_qname_0': 3, 'a_name_1': 'age',
'id_qname_1': 5.0, 'a_name_2': 'sex', 'id_qname_2': 7.0}]
对于第二个DataFrame不确定100%:
L1 = [dict(zip(list(x.values())[::2], list(x.values())[1::2])) for x in L]
df = pd.DataFrame(L1)
print (df)
country region city age sex
0 1.0 NaN NaN NaN NaN
1 NaN 2.0 8.0 NaN NaN
2 NaN 2.0 9.0 NaN NaN
3 NaN 3.0 NaN 4.0 6.0
4 NaN 3.0 NaN 5.0 7.0