在Clickhouse中按操作员获取前n行而不按顺序排列

时间:2019-12-27 12:04:39

标签: clickhouse

我有一张桌子

CREATE TABLE StatsFull (
  Timestamp Int32,
  Uid String,
  ErrorCode Int32,
  Name String,
  Version String,
  Date Date MATERIALIZED toDate(Timestamp),
  Time DateTime MATERIALIZED toDateTime(Timestamp)
) ENGINE = MergeTree() PARTITION BY toMonday(Date)
ORDER BY Time SETTINGS index_granularity = 8192

我需要获得具有唯一Uid的前100个名称或前100个错误代码。
显而易见的查询是

SELECT Name, uniq(PcId) as cnt FROM StatsFull
WHERE Time > subtractDays(toDate(now()), 1)
GROUP BY Name ORDER BY cnt DESC LIMIT 100

但是数据太大,所以我创建了一个AggregatingMergeTree,因为我不需要按小时(按日期)过滤数据。

CREATE MATERIALIZED VIEW StatsAggregated (
  Date Date,
  ProductName String,
  ErrorCode Int32,
  Name String,
  Version String,
  UniqUsers AggregateFunction(uniq, String),
) ENGINE = AggregatingMergeTree() PARTITION BY toMonday(Date)
ORDER BY
  (
    Date,
    ProductName,
    ErrorCode,
    Name,
    Version
  ) SETTINGS index_granularity = 8192 AS
SELECT
  Date,
  ProductName,
  ErrorCode,
  Name,
  Version,
  uniqState(Uid) AS UniqUsers,
FROM
  StatsFull
GROUP BY
  Date,
  ProductName,
  ErrorCode,
  Name,
  Version

我当前的查询是:

SELECT Name FROM StatsAggregated 
WHERE Date > subtractDays(toDate(now()), 1)
GROUP BY Name
ORDER BY uniqMerge(UniqUsers) DESC LIMIT 100

该查询工作正常,但是最终一天中的数据行变得越来越多,现在它对内存也过于贪婪。所以我正在寻找一些优化。

我发现了函数 topK(N)(column),该函数返回指定列中最频繁出现的值的数组,但这不是我所需要的。

2 个答案:

答案 0 :(得分:1)

我建议以下几点:

  • 使用uniqCombined / uniqCombined64与uniq

  • 相比,“消耗的内存少几倍”
  • 减少聚合视图中的尺寸计数(看起来可以省略 ProductName Version

CREATE MATERIALIZED VIEW StatsAggregated (
  Date Date,
  Name String,
  ErrorCode Int32
  UniqUsers AggregateFunction(uniq, String),
) ENGINE = AggregatingMergeTree()
PARTITION BY toMonday(Date)
ORDER BY (Date, Name, ErrorCode) AS
SELECT Date, Name, ErrorCode, uniqState(Uid) AS UniqUsers,
FROM StatsFull
GROUP BY Date, Name, ErrorCode;
  • -产生的查询的子句中添加额外的“启发式”约束
SELECT Name, uniqMerge(UniqUsers) uniqUsers 
FROM StatsAggregated 
WHERE Date > subtractDays(toDate(now()), 1)
  AND uniqUsers > 12345 /* <-- 12345 is 'heuristic' number that you evaluate based on your data */
  AND ErrorCode = 0 /* apply any other conditions to narrow the result set as short as possible */
GROUP BY Name
ORDER BY uniqUsers DESC LIMIT 100

/* Raw-table */

CREATE TABLE StatsFull (
 /* .. */
) ENGINE = MergeTree() 
PARTITION BY toMonday(Date)
SAMPLE BY xxHash32(Uid) /* < -- */
ORDER BY Time, xxHash32(Uid)

/* Applying sampling to raw-table can make faster the short-term queries (period in several hours etc) */

SELECT Name, uniq(PcId) as cnt 
FROM StatsFull
SAMPLE 0.05 /* <-- */
WHERE Time > subtractHours(now(), 6) /* <-- hours-period */
GROUP BY Name 
ORDER BY cnt DESC LIMIT 100


/* Aggregated-table */

CREATE MATERIALIZED VIEW StatsAggregated (
  Date Date,
  ProductName String,
  ErrorCode Int32,
  Name String,
  Version String,
  UniqUsers AggregateFunction(uniq, String),
) ENGINE = AggregatingMergeTree() 
PARTITION BY toMonday(Date)
SAMPLE BY intHash32(toInt32(Date)) /* < -- not sure that is good to choose */
ORDER BY (intHash32(toInt32(Date)), ProductName, ErrorCode, Name, Version)
SELECT /* .. */ FROM StatsFull GROUP BY /* .. */**

/* Applying sampling to aggregated-table can make faster the long-term queries (period in several weeks, months etc) */

SELECT Name 
FROM StatsAggregated 
SAMPLE 0.1 /* < -- */
WHERE Date > subtractMonths(toDate(now()), 3) /* <-- months-period */
GROUP BY Name
ORDER BY uniqMerge(UniqUsers) DESC LIMIT 100

将数据分为几个部分(碎片)可以进行分布式处理。

答案 1 :(得分:0)

如果您需要将transpone数组转换为行,则可以使用arrayJoin

IObservable<T>