我有一个数据框:
df = pd.DataFrame({'REF':list('GCTT'), 'ALT':list('AACG'),
'A1':['0/1','0/1','0/0','0/1'],
'A2':['1/1','0/1','0/1','0/0']})
REF ALT A1 A2
0 G A 0/1 1/1
1 C A 0/1 0/1
2 T C 0/0 0/1
3 T G 0/1 0/0
我想基于REF和ALT列中的值转换列A1和A2。因此,第0行的A1和A2列应显示GA和AA。例如,丢失“ /”,将0替换为G,将1替换为A。接下来,第1行应将C替换为0,将A替换为1。然后按照下一行的模式进行操作:
REF ALT A1 A2
0 G A GA AA
1 C A CA CA
2 T C TT TC
3 T G TG TT
在我的数据中,有数百个A列:A1,A2 ...... An-1,An。因此,该解决方案需要在所有列中都是可复制的。
答案 0 :(得分:2)
I wonder how fast this solution is with your data:
for col in ["A1","A2"]:
df[col]= df[col].str.split("/",expand=True) \
.replace(["0","1"],[df.REF,df.ALT]) \
.agg("".join,axis=1)
df
REF ALT A1 A2
0 G A GA AA
1 C A CA CA
2 T C TT TC
3 T G TG TT
编辑:解决方案2.,使用索引:
# helper structs:
ncbscols= ["REF","ALT"]
cols= df.columns.difference(ncbscols)
ii= pd.MultiIndex.from_product([list("ACGT"),list("ACGT"),["0/0","0/1","1/1","1/0"] ])
ser= pd.Series( [t[2].replace("/","").replace("0",t[0]).replace("1",t[1]) for t in ii ], index=ii )
# the main calculation:
for c in cols:
mi= pd.MultiIndex.from_arrays([ df.REF.values,df.ALT.values,df[c].values ])
df[c]= ser[mi].values
ser:
A A 0/0 AA
0/1 AA
1/1 AA
1/0 AA
C 0/0 AA
..
T G 1/0 GT
T 0/0 TT
0/1 TT
1/1 TT
1/0 TT
Length: 64, dtype: object
df:
REF ALT A1 A2
0 G A GA AA
1 C A CA CA
2 T C TT TC
3 T G TG TT
答案 1 :(得分:0)
我认为可能会有更好的方法来做到这一点,但这是可行的。 让我知道这是否是性能问题。
XDO_
另一个选择
acols = df.drop(['REF', 'ALT'], axis=1).columns
for i in acols:
df.loc[df[i] == '0/0', i] = df['REF'] * 2
df.loc[df[i] == '0/1', i] = df['REF'] + df['ALT']
df.loc[df[i] == '1/1', i] = df['ALT'] * 2
for i in acols:
df[i] = df[i].replace(to_replace='0/0', value=df['REF']+df['REF'])
df[i] = df[i].replace(to_replace='0/1', value=df['REF']+df['ALT'])
df[i] = df[i].replace(to_replace='1/1', value=df['ALT']+df['ALT'])
答案 2 :(得分:0)
您只有4个0
和1
组合,所以我认为您可以尝试np.select
df1 = df.drop(['REF', 'ALT'], axis=1)
#conditions
combo = ['0/0', '0/1', '1/0', '1/1']
conds = [df1.eq(x) for x in combo]
#selections
s00 = (df.REF * 2).to_numpy()[:,None]
s11 = (df.ALT * 2).to_numpy()[:,None]
s01 = (df.REF + df.ALT).to_numpy()[:,None]
df.loc[:, df1.columns.tolist()] = np.select(conds , [s00, s01, s01[:,::-1], s11], np.nan)
Out[260]:
REF ALT A1 A2
0 G A GA AA
1 C A CA CA
2 T C TT TC
3 T G TG TT