我有一个由四行A = array([[-1, -1, -1, -1], [-1, -1, 1, 2], [-1, -1, 1, 1], [2, 1, -1, 2]])
组成的数组。每行中有4
个数字。如何删除row#3
和row#4
?在row#3
和row#4
中,1
和2
分别出现多次。
对于任意数量的行和列,是否有更快的方法?主要目的是删除那些非负数出现多次的行。
答案 0 :(得分:2)
您可以使用类似的方法:首先使用np.unique在子数组中创建每个值出现的字典,并仅保留不出现正数超过一次的数组。
A = np.array([[-1, -1, -1, -1], [-1, -1, 1, 2], [-1, -1, 1, 1], [2, 1, -1, 2]])
new_array = []
# loop through each array
for array in A:
# Get a dictionary of the counts of each value
unique, counts = np.unique(array, return_counts=True)
counts = dict(zip(unique, counts))
# Find the number of occurences of postive numbers
positive_occurences = [value for key, value in counts.items() if key > 0]
# Append to new_array if no positive number appears more than once
if any(y > 1 for y in positive_occurences):
continue
else:
new_array.append(array)
new_array = np.array(new_array)
这将返回:
array([[-1, -1, -1, -1],
[-1, -1, 1, 2]])
答案 1 :(得分:2)
我的完全矢量化方法:
import numpy as np
a = np.array([[-1, -1, -1, -1], [-1, -1, 1, 2], [-1, -1, 1, 1], [2, 1, -1, 2]])
# sort each row
b = np.sort(a)
# mark positive duplicates
drop = np.any((b[:,1:]>0) & (b[:,1:] == b[:,:-1]), axis=1)
# drop
aa = a[~drop, :]
Output:
array([[-1, -1, -1, -1],
[-1, -1, 1, 2]])
答案 2 :(得分:0)
我也修改了存储索引:
A = np.array([[-1, -1, -1, -1], [-1, -1, 1, 2], [-1, -1, 1, 1], [2, 1, -1, 2]])
new_array = []
**indiceStore = np.array([])**
# loop through each array
for array in A:
# Get a dictionary of the counts of each value
unique, counts = np.unique(array, return_counts=True)
counts = dict(zip(unique, counts))
# Find the number of occurences of postive numbers
positive_occurences = [value for key, value in counts.items() if key > 0]
# Append to new_array if no positive number appears more than once
if any(y > 1 for y in positive_occurences):
**indiceStore = np.append(indiceStore, int(array))**
continue
else:
new_array.append(array)
new_array = np.array(new_array)
如果这是对的,请让我知道。