我有一个如下数据框(这是问题here的更新)
id val type
aa 0 C
aa 1 T
aa 2 T
aa 3 T
aa 0 M
aa 1 M
aa 2 C
aa 3 M
bbb 0 C
bbb 1 T
bbb 2 T
bbb 3 T
bbb 0 M
bbb 1 M
bbb 2 C
bbb 3 T
cccccc 0 C
cccccc 1 T
cccccc 2 T
cccccc 3 T
cccccc 0 M
cccccc 1 M
cccccc 0 C
cccccc 1 C
dddddddd 3 G
我想先做一个groupby
“ ID”,然后再做sum
&count
列“ val”中的行,但是应该加起来的行只是包含以下内容的行“类型”与每个组中“类型”列的最后一个值相同。另外,如果有多于一行,则不应对最后一行的值求和或计数。如果最后一个值只有一行,那么应该对最后一行进行求和计数。
例如,组“ aa”的最后一行具有“类型” M,因此仅对组中具有“类型” M的行进行求和和计数。但是,由于带有M的行多于一个,因此仅对最后一行以外的行进行求和计数。因此,需要将值0和1相加并且计数为2。
在另一种情况下,组“ dddddddd”只有一行,因此总和应为3,计数应为1。
上述df的预期输出如下。输出中的“类型”列不是必需的,如果花费更多时间可以将其忽略。我在这里展示它只是为了让我更清楚地说明要实现的目标。
id val count type
aa 1 2 M
bbb 6 3 T
cccccc 0 2 C
dddddddd 3 1 G
答案 0 :(得分:2)
想法是按DataFrame.drop_duplicates
过滤每组的最后一行,如果count不为1
,则减去该想法:
df1 = (df[df['type'].eq(df.groupby('id')['type'].transform('last'))]
.groupby('id').agg(val=('val', 'sum'),
count=('val', 'size'),
type=('type','last')))
print (df1)
val count type
id
aa 4 3 M
bbb 9 4 T
cccccc 1 3 C
dddddddd 3 1 G
s = df.drop_duplicates('id', keep='last').set_index('id')['val']
m = df1['count'] != 1
df1['val'] -= np.where(m, s, 0)
df1['count'] -= np.where(m, 1, 0)
print (df1)
val count type
id
aa 1 2 M
bbb 6 3 T
cccccc 0 2 C
dddddddd 3 1 G
另一种解决方案:
cols = ['val','count']
df2 = (df.drop_duplicates('id', keep='last')
.set_index('id')
.assign(count=1)[cols])
df1[cols] = df1[cols].sub(df2.where(df1['count'] != 1, 0))
print (df1)
val count type
id
aa 1 2 M
bbb 6 3 T
cccccc 0 2 C
dddddddd 3 1 G
详细信息:
print (df2)
val count
id
aa 3 1
bbb 3 1
cccccc 1 1
dddddddd 3 1
答案 1 :(得分:2)
找到最后一个值,然后从末尾的总和中减去它:
last_type = df.groupby("id").tail(1).rename(columns={'val':'last_val'})
res= df.merge(last_type, on=["id", "type"], how="inner").groupby(["id", "type"]).agg(
val = ('val', 'sum'),
count = ('val', 'count'),
last_val = ('last_val', 'first')).reset_index()
multiple = res['count'] > 1
res['val'] -= multiple*res['last_val']
res['count'] -= multiple
res.drop(columns='last_val')
Output:
id type val count
0 aa M 1 2
1 bbb T 6 3
2 cccccc C 0 2
3 dddddddd G 3 1