我有一个包含三列的交易数据集。每行代表一笔交易。
Account_from Account_to Value
1 1 2 25.0
2 1 3 30.0
3 2 1 28.0
4 2 3 10.0
5 2 4 12.0
6 3 1 40.0
我想创建新的列变量,其中包含有关每个帐户已进行和接收的交易数量的信息(两列)。它看起来像以下内容:
Account_from Account_to Value Count_out Count_in
1 1 2 25.0 2 2
2 1 3 30.0 2 2
3 2 1 28.0 3 1
4 2 3 10.0 3 1
5 2 4 12.0 3 1
6 3 1 40.0 1 2
如何一次对整个数据集执行此操作?
答案 0 :(得分:1)
tidyverse提供有用的功能-假设您的数据存储在数据帧df
中:
library(tidyverse)
df <- df %>% add_count(Account_from, name = "Count_out") %>%
add_count(Account_to, name = "Count_in")
答案 1 :(得分:0)
我们可以使用dplyr
进行一些联接操作。
library(dplyr)
inner_join(df %>% count(Account_from, name = 'Count_out'),
df %>% count(Account_to, name = 'Count_in'),
by = c('Account_from' = 'Account_to')) %>%
right_join(df) %>%
select(names(df), Count_out, Count_in)
# Account_from Account_to Value Count_out Count_in
# <int> <int> <dbl> <int> <int>
#1 1 2 25 2 2
#2 1 3 30 2 2
#3 2 1 28 3 1
#4 2 3 10 3 1
#5 2 4 12 3 1
#6 3 1 40 1 2
答案 2 :(得分:0)
这是在基数R中使用ave()
的解决方案
df <- within(df,
list(Count_out <- ave(1:nrow(df),Account_from,FUN = length),
Count_in <- ave(1:nrow(df),Account_to,FUN = length)[match(Account_from,Account_to,)]))
如此
> df
Account_from Account_to Value Count_in Count_out
1 1 2 25 2 2
2 1 3 30 2 2
3 2 1 28 1 3
4 2 3 10 1 3
5 2 4 12 1 3
6 3 1 40 2 1
或使用以下代码:
df <- cbind(df, with(df, list(Count_out = ave(1:nrow(df),Account_from,FUN = length),
Count_in = ave(1:nrow(df),Account_to,FUN = length)[match(Account_from,Account_to,)])))
如此
> df
Account_from Account_to Value Count_out Count_in
1 1 2 25 2 2
2 1 3 30 2 2
3 2 1 28 3 1
4 2 3 10 3 1
5 2 4 12 3 1
6 3 1 40 1 2
数据
df <- structure(list(Account_from = c(1L, 1L, 2L, 2L, 2L, 3L), Account_to = c(2L,
3L, 1L, 3L, 4L, 1L), Value = c(25, 30, 28, 10, 12, 40), Count_out = c(2L,
2L, 3L, 3L, 3L, 1L), Count_in = c(2L, 2L, 1L, 1L, 1L, 2L)), class = "data.frame", row.names = c(NA,
-6L))