在这种情况下能否提取这些张量的值?

时间:2019-12-18 07:20:14

标签: python tensorflow deep-learning neural-network

我正在训练一个使用张量流碎片作为训练输入的神经网络。我需要在将图像显示给网络之前提取图像的文件名,因为我需要将模型的输入与与此文件关联的其他数据进行同步。因此,我需要通过图像的随机化和多线程处理来推动关联的文件名。问题是我不知道如何在从具有其值的张量中提取文件名时如何维护模型的功能。

如果我尝试filenames[i].eval(),则会收到一条错误消息,提示未注册任何默认会话。当我尝试

sess = tf.Session()
thefile = fname_splits[i]
sess.run(thefile.eval(session=sess))

我的程序锁定并停滞。 当我简单地打印(fname [i])时,输出为

Tensor("split_2:0", shape=(50,), dtype=string, device=/device:CPU:0)

下面需要获取名称的代码段

在!!!!!!!!!!!!!!!!!!!!!!!!中概述的会话是我需要文件名的地方

def train(dataset):
  """Train on dataset for a number of steps."""
  with tf.Graph().as_default(), tf.device('/cpu:0'):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        'global_step', [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (dataset.num_examples_per_epoch() /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
                                    global_step,
                                    decay_steps,
                                    FLAGS.learning_rate_decay_factor,
                                    staircase=True)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.RMSPropOptimizer(lr, RMSPROP_DECAY,
                                    momentum=RMSPROP_MOMENTUM,
                                    epsilon=RMSPROP_EPSILON)

    # Get images and labels for ImageNet and split the batch across GPUs.
    assert FLAGS.batch_size % FLAGS.num_gpus == 0, (
        'Batch size must be divisible by number of GPUs')
    split_batch_size = int(FLAGS.batch_size / FLAGS.num_gpus)

    # Override the number of preprocessing threads to account for the increased
    # number of GPU towers.
    num_preprocess_threads = FLAGS.num_preprocess_threads * FLAGS.num_gpus
    images, labels, filenames = image_processing.distorted_inputs(
        dataset,
        num_preprocess_threads=num_preprocess_threads)

    input_summaries = copy.copy(tf.get_collection(tf.GraphKeys.SUMMARIES))

    # Number of classes in the Dataset label set plus 1.
    # Label 0 is reserved for an (unused) background class.
    num_classes = dataset.num_classes() + 1

     # Split the batch of images and labels for towers.
    images_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=images)
    labels_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=labels)
    fname_splits = tf.split(axis=0, num_or_size_splits=FLAGS.num_gpus, value=labels)

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    I need to know what fname_splits[i] is so I can feed correct input to "my_otherfeatures"
    in _tower_loss() below.


    # Calculate the gradients for each model tower.
    tower_grads = []
    reuse_variables = None
    for i in range(FLAGS.num_gpus):
      with tf.device('/gpu:%d' % i):
        with tf.name_scope('%s_%d' % (inception.TOWER_NAME, i)) as scope:
          # Force all Variables to reside on the CPU.
          with slim.arg_scope([slim.variables.variable], device='/cpu:0'):
            # Calculate the loss for one tower of the ImageNet model. This
            # function constructs the entire ImageNet model but shares the
            # variables across all towers.
            loss = _tower_loss(images_splits[i], labels_splits[i], my_otherfeatures, num_classes,
                               scope, reuse_variables)

          # Reuse variables for the next tower.
          reuse_variables = True

          # Retain the summaries from the final tower.
          summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

          # Retain the Batch Normalization updates operations only from the
          # final tower. Ideally, we should grab the updates from all towers
          # but these stats accumulate extremely fast so we can ignore the
          # other stats from the other towers without significant detriment.
          batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION,
                                                scope)

          # Calculate the gradients for the batch of data on this ImageNet
          # tower.
          grads = opt.compute_gradients(loss)

          # Keep track of the gradients across all towers.
          tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = _average_gradients(tower_grads)

    # Add a summaries for the input processing and global_step.
    summaries.extend(input_summaries)

    # Add a summary to track the learning rate.
    summaries.append(tf.summary.scalar('learning_rate', lr))

    # Add histograms for gradients.
    for grad, var in grads:
      if grad is not None:
        summaries.append(
            tf.summary.histogram(var.op.name + '/gradients', grad))

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
      summaries.append(tf.summary.histogram(var.op.name, var))

    # Track the moving averages of all trainable variables.
    # Note that we maintain a "double-average" of the BatchNormalization
    # global statistics. This is more complicated then need be but we employ
    # this for backward-compatibility with our previous models.
    variable_averages = tf.train.ExponentialMovingAverage(
        inception.MOVING_AVERAGE_DECAY, global_step)

    # Another possibility is to use tf.slim.get_variables().
    variables_to_average = (tf.trainable_variables() +
                            tf.moving_average_variables())
    variables_averages_op = variable_averages.apply(variables_to_average)

    # Group all updates to into a single train op.
    batchnorm_updates_op = tf.group(*batchnorm_updates)
    train_op = tf.group(apply_gradient_op, variables_averages_op,
                        batchnorm_updates_op)

    # Create a saver.
    # saver = tf.train.Saver(tf.global_variables())
    saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)

    # Build the summary operation from the last tower summaries.
    summary_op = tf.summary.merge(summaries)

    # Build an initialization operation to run below.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    if FLAGS.pretrained_model_checkpoint_path:
      try:
        assert tf.gfile.Exists(FLAGS.pretrained_model_checkpoint_path)
        variables_to_restore = tf.get_collection(
            slim.variables.VARIABLES_TO_RESTORE)
        restorer = tf.train.Saver(variables_to_restore)
        restorer.restore(sess, FLAGS.pretrained_model_checkpoint_path)
        print('%s: Pre-trained model restored from %s' %
              (datetime.now(), FLAGS.pretrained_model_checkpoint_path))
      except:
        #restorer = tf.train.import_meta_graph(FLAGS.pretrained_model_checkpoint_path + '.meta')
        variables_to_restore = tf.get_collection(
            slim.variables.VARIABLES_TO_RESTORE)
        restorer = tf.train.Saver(variables_to_restore)
        restorer.restore(sess, FLAGS.pretrained_model_checkpoint_path)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(
        FLAGS.train_dir,
        graph=sess.graph)

    for step in range(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        examples_per_sec = FLAGS.batch_size / float(duration)
        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print(format_str % (datetime.now(), step, loss_value,
                            examples_per_sec, duration))
        with open(os.path.join(FLAGS.train_dir, 'training_loss.txt'), "a") as myfile:
          myfile.write(format_str % (datetime.now(), step, loss_value,
                            examples_per_sec, duration))
          myfile.write("\n")
      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % FLAGS.save_step_for_chekcpoint == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)

0 个答案:

没有答案