将Tensorflow(.pb)格式转换为Keras(.h5)

时间:2019-12-17 13:49:02

标签: python-3.x tensorflow machine-learning keras deep-learning

我正在尝试将Tensorflow(.pb)格式的模型转换为Keras(.h5)格式,以查看事后注意的可视化。 我已经尝试过下面的代码。

file_pb = "/test.pb"
file_h5 = "/test.h5"
loaded_model = tf.keras.models.load_model(file_pb)
tf.keras.models.save_keras_model(loaded_model, file_h5)
loaded_model_from_h5 = tf.keras.models.load_model(file_h5)

有人可以帮我吗?这有可能吗?

1 个答案:

答案 0 :(得分:4)

在最新的Tensorflow Version (2.2)中,当我们使用Save tf.keras.models.save_model进行建模时,该模型将不仅是Saved中的pb file,而且还会是除了Variables文件外,还保存在一个文件夹中,该文件夹包括Assets文件夹和saved_model.pb文件夹,如以下屏幕截图所示:

Saved Model Folder

例如,如果Model是名称为 Saved "Model",则我们必须使用文件夹名称Load ,而不是saved_model.pb的“模型”,如下所示:

loaded_model = tf.keras.models.load_model('Model')

代替

loaded_model = tf.keras.models.load_model('saved_model.pb')

您可以做的另一项改变是替换

tf.keras.models.save_keras_model

tf.keras.models.save_model

将模型从Tensorflow Saved Model Format (pb)转换为Keras Saved Model Format (h5)的完整工作代码如下所示:

import os
import tensorflow as tf
from tensorflow.keras.preprocessing import image

New_Model = tf.keras.models.load_model('Dogs_Vs_Cats_Model') # Loading the Tensorflow Saved Model (PB)
print(New_Model.summary())

New_Model.summary命令的输出为:

Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 148, 148, 32)      896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 72, 72, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 6272)              0         
_________________________________________________________________
dense (Dense)                (None, 512)               3211776   
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 513       
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________
None

继续执行代码:

# Saving the Model in H5 Format and Loading it (to check if it is same as PB Format)
tf.keras.models.save_model(New_Model, 'New_Model.h5') # Saving the Model in H5 Format

loaded_model_from_h5 = tf.keras.models.load_model('New_Model.h5') # Loading the H5 Saved Model
print(loaded_model_from_h5.summary())

命令print(loaded_model_from_h5.summary())的输出如下所示:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 148, 148, 32)      896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 72, 72, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 6272)              0         
_________________________________________________________________
dense (Dense)                (None, 512)               3211776   
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 513       
=================================================================
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0
_________________________________________________________________

从以上两个Summary的{​​{1}}可以看出,两个Models是相同的。

如果您需要其他任何信息,请告诉我,我们将竭诚为您服务。

希望这会有所帮助。学习愉快。