我已经决定尝试掌握Microsoft的新ML.Net library。
我正在尝试使用自己拥有的一些演示数据来制作自己的taxi fair示例版本,但是它总是抛出一个错误,说它可以找到我的一列。
这是我的代码。
using Microsoft.ML;
using System;
namespace MLTest
{
class Program
{
static void Main(string[] args)
{
string fileLocTraining = "C:\\Temp\\a49673f6-c073-4731-b00d-922e4313826ftraining.txt";
string fileLocTesting = "C:\\Temp\\f6bd1704-2d78-4b6f-901c-def4cecea638testing.txt";
MLContext mlContext = new MLContext(0);
IDataView trainingDataView = mlContext.Data.LoadFromTextFile(fileLocTraining,
new Microsoft.ML.Data.TextLoader.Options()
{
Separators = new char[] { ',' },
HasHeader = true,
AllowQuoting = true,
TrimWhitespace = true,
AllowSparse = false
});
IDataView testingDataView = mlContext.Data.LoadFromTextFile(fileLocTesting,
new Microsoft.ML.Data.TextLoader.Options()
{
Separators = new char[] { ',' },
HasHeader = true,
AllowQuoting = true,
TrimWhitespace = true,
AllowSparse = false
});
var pipeline = mlContext.Transforms.CopyColumns("Label", "PCT_DIABETES_ADULTS13")
.Append(mlContext.Transforms.NormalizeMeanVariance("PCH_RECFAC_09_14"))
.Append(mlContext.Transforms.NormalizeMeanVariance("PCH_RECFACPTH_09_14"))
.Append(mlContext.Transforms.NormalizeMeanVariance("PCT_DIABETES_ADULTS08"))
.Append(mlContext.Transforms.Concatenate("Features", new string[] { "PCH_RECFAC_09_14", "PCH_RECFACPTH_09_14", "PCT_DIABETES_ADULTS08" }));
var trainer = mlContext.Regression.Trainers.Sdca(new Microsoft.ML.Trainers.SdcaRegressionTrainer.Options()
{
LabelColumnName = "Label",
FeatureColumnName = "Features"
});
var trainingPipeline = pipeline.Append(trainer);
var trainedModel = trainingPipeline.Fit(trainingDataView);
IDataView predictions = trainedModel.Transform(testingDataView);
var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label", scoreColumnName: "Score");
Console.WriteLine($"*Metrics for {trainer.ToString()} regression model");
Console.WriteLine(string.Empty);
Console.WriteLine($"*LossFn: {metrics.LossFunction:0.##}");
Console.WriteLine($"*R2 Score: {metrics.RSquared:0.##}");
Console.WriteLine($"*Absolute loss: {metrics.MeanAbsoluteError:#.##}");
Console.WriteLine($"*Squared loss: {metrics.MeanSquaredError:#.##}");
Console.WriteLine($"*RMS loss: {metrics.RootMeanSquaredError:#.##}");
}
}
}
这是我的训练数据:
"PCH_RECFAC_09_14","PCH_RECFACPTH_09_14","PCT_DIABETES_ADULTS08","State","PCT_DIABETES_ADULTS13"
"171.4759665630000023","170.35666635199999745","99.0","VT","113.2000000000000004"
"-933.5367823810000094","-1139.57172938600001097","1861.7999999999999914","GA","2017.1999999999999974"
"29.1010194630000001","9.9002080500000003","30.5","DE","35.0"
"-167.8067765570000007","-236.87467502700001471","451.0999999999999965","MT","523.1000000000000028"
"-1498.4938905129999974","-1469.44056142600000057","825.2999999999999946","MI","943.7999999999999959"
"415.2291004140000053","424.05151568300002718","527.8000000000000042","NY","597.1000000000000025"
"-258.5561990550000000","-309.17482086900000954","874.7000000000000037","AL","1037.7999999999999973"
"-926.7641660469999960","-850.90679617099999136","898.0999999999999944","IL","1071.5999999999999991"
"-1074.4047619060000027","-1082.9095524559999993","696.0999999999999997","WV","766.900000000000003"
"-230.055210490000003","-278.38893846099999238","376.9000000000000028","ID","406.4999999999999990"
"-204.1902273029999988","-815.70881217100001012","2510.7999999999999941","TX","2640.5999999999999894"
"-1161.7043315749999929","-1355.53681784899999911","1079.5999999999999956","NC","1232.8999999999999983"
"78.7183300220000005","37.91106390300000234","116.2999999999999993","MA","126.8000000000000000"
"-268.1089583949999992","-321.57691234899998861","239.2999999999999962","MD","265.5000000000000007"
"-405.7849735820000025","-506.98501040599999381","563.1000000000000000","SC","660.9000000000000027"
"-705.3722863439999958","-768.52692485499999770","657.9999999999999979","MN","770.6999999999999977"
"-375.9511803369999965","-513.45842248599999286","441.2000000000000007","CA","508.9000000000000001"
"220.885885677999998","189.43248436999999054","608.3999999999999955","WI","698.8999999999999994"
"-199.1347947649999924","-311.44753966100000708","767.3999999999999997","LA","825.199999999999999"
"-992.7746890779999904","-1055.50188427299999511","929.1999999999999910","IN","1107.8999999999999987"
"-883.1533289950000014","-999.50961415399995717","1120.3999999999999997","TN","1310.9000000000000000"
"-749.076479076999998","-788.46602512299997671","1020.3999999999999902","KS","1142.2999999999999993"
"148.966976209000002","-14.91930678100006021","218.8999999999999972","UT","241.0999999999999990"
"182.4915824919999989","186.41089870600000035","81.4000000000000007","NH","98.7999999999999997"
"589.9071328560000117","463.30462715499996500","873.5999999999999952","OK","1002.9999999999999997"
"-926.4009669510000067","-912.01494010899998550","940.7999999999999960","OH","1093.8999999999999976"
从我的代码中可以看到,我试图基于“ PCH_RECFAC_09_14”,“ PCH_RECFACPTH_09_14”和“ PCT_DIABETES_ADULTS08”来预测“ PCT_DIABETES_ADULTS13”。问题是当我尝试创建训练模型时,系统似乎找不到“ PCT_DIABETES_ADULTS13”列。
有人知道我要去哪里哪里以及如何解决该问题吗?
答案 0 :(得分:0)
修改所有以pipeline.Append(...)
开头的行。 Append(...)
方法不是void
,而是返回一种IEstimator<ITransformer>
。您必须将返回值分配回管道。更改所有
pipeline.Append(...)
到
pipeline = pipeline.Append(...)
当我尝试从SentimentAnalysis示例中得出一些东西时,我不得不自己学习困难的方式。
答案 1 :(得分:0)
该错误是由于我正在加载数据而没有在LoadFromTextFile中指定类型所致。
可以通过执行以下类似操作来解决此问题
List<Microsoft.ML.Data.TextLoader.Column> mlCols = new List<Microsoft.ML.Data.TextLoader.Column>();
mlCols.Add(new Microsoft.ML.Data.TextLoader.Column("PCH_RECFAC_09_14", Microsoft.ML.Data.DataKind.Single, 0));
mlCols.Add(new Microsoft.ML.Data.TextLoader.Column("PCH_RECFACPTH_09_14", Microsoft.ML.Data.DataKind.Single, 1));
mlCols.Add(new Microsoft.ML.Data.TextLoader.Column("PCT_DIABETES_ADULTS08", Microsoft.ML.Data.DataKind.Single, 2));
mlCols.Add(new Microsoft.ML.Data.TextLoader.Column("State", Microsoft.ML.Data.DataKind.String, 3));
mlCols.Add(new Microsoft.ML.Data.TextLoader.Column("PCT_DIABETES_ADULTS13", Microsoft.ML.Data.DataKind.Single, 4));
IDataView trainingDataView = mlContext.Data.LoadFromTextFile(fileLocTraining, mlCols.ToArray(),
',', true, true, true, false);