为什么我的RNN模型没有给出划时代的结果

时间:2019-12-17 07:38:10

标签: tensorflow machine-learning keras recurrent-neural-network

我有一个带有以下代码的简单RNN模型:

s_input = Input((window_size, ), dtype='int32', name='S')
t_input = Input((window_size, ), dtype='int32', name='T')
emb1 = Embedding(nb_points + 1, emb_size1)
emb2 = Embedding(tm_length + 1, emb_size2)
xe = emb1(s_input) 
he = emb2(t_input)    
x = Concatenate()([xe, he])
x = SimpleRNN(rnn_size)(x)
y = Dense(nb_points, activation='softmax')(x) 
model = Model([s_input, t_input], y)
model.compile('adadelta', 'categorical_crossentropy', metrics=['accuracy'])
return model

当我尝试使用并调用模型时。我有这个模型摘要:

Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
S (InputLayer)                  (None, 2)            0                                            
__________________________________________________________________________________________________
T (InputLayer)                  (None, 2)            0                                            
__________________________________________________________________________________________________
embedding_32 (Embedding)        (None, 2, 100)       500         S[0][0]                          
__________________________________________________________________________________________________
embedding_33 (Embedding)        (None, 2, 6)         150         T[0][0]                          
__________________________________________________________________________________________________
concatenate_15 (Concatenate)    (None, 2, 106)       0           embedding_32[0][0]               
                                                                 embedding_33[0][0]               
__________________________________________________________________________________________________
simple_rnn_10 (SimpleRNN)       (None, 20)           2540        concatenate_15[0][0]             
__________________________________________________________________________________________________
dense_4 (Dense)                 (None, 4)            84          simple_rnn_10[0][0]              
==================================================================================================
Total params: 3,274
Trainable params: 3,274
Non-trainable params: 0
_________________________________________________________________________________________________

但是,对于每个时期,它都不会给出任何准确性和丢失的结果。只打印这样的东西:

Train on 40 samples, validate on 11 samples
Epoch 1/100
Processing user 1.

有人可以帮助我吗?纪元的结果未打印。

0 个答案:

没有答案