首先,对于如此直接的问题,我深感抱歉。 我看过这篇文章:link最近。现在我正在做作业。我试图显示模型的准确性,准确性,召回率,f1度量。但是这样做没有成功。 我的问题可以显示所提出模型的准确性,准确性,召回率,f1度量吗?
```from sklearn.metrics import precision_recall_fscore_support as score
precision, recall, fscore, support = score(trainset, predictions)
print('precision: {}'.format(precision))
print('recall: {}'.format(recall))
print('fscore: {}'.format(fscore))
print('support: {}'.format(support))```
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-38-70db6200efad> in <module>
1 from sklearn.metrics import precision_recall_fscore_support as score
2
----> 3 precision, recall, fscore, support = score(trainset, predictions)
4
5 print('precision: {}'.format(precision))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in precision_recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight)
1413 raise ValueError("beta should be >0 in the F-beta score")
1414 labels = _check_set_wise_labels(y_true, y_pred, average, labels,
-> 1415 pos_label)
1416
1417 # Calculate tp_sum, pred_sum, true_sum ###
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in _check_set_wise_labels(y_true, y_pred, average, labels, pos_label)
1237 str(average_options))
1238
-> 1239 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
1240 present_labels = unique_labels(y_true, y_pred)
1241 if average == 'binary':
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in _check_targets(y_true, y_pred)
69 y_pred : array or indicator matrix
70 """
---> 71 check_consistent_length(y_true, y_pred)
72 type_true = type_of_target(y_true)
73 type_pred = type_of_target(y_pred)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
199 """
200
--> 201 lengths = [_num_samples(X) for X in arrays if X is not None]
202 uniques = np.unique(lengths)
203 if len(uniques) > 1:
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in <listcomp>(.0)
199 """
200
--> 201 lengths = [_num_samples(X) for X in arrays if X is not None]
202 uniques = np.unique(lengths)
203 if len(uniques) > 1:
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _num_samples(x)
140 else:
141 raise TypeError("Expected sequence or array-like, got %s" %
--> 142 type(x))
143 if hasattr(x, 'shape'):
144 if len(x.shape) == 0:
TypeError: Expected sequence or array-like, got <class 'surprise.trainset.Trainset'>